Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation
[Display omitted] •Shape-specific CeO2 catalysts with well-defined crystal facets were synthesized.•Ceria-shape effect on structural defects and surface chemistry was demonstrated.•CeO2-rods with porous structure exhibits optimum H2S selective oxidation activity.•Nature of active sites and reaction...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2019-09, Vol.252, p.98-110 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 98 |
container_title | Applied catalysis. B, Environmental |
container_volume | 252 |
creator | Zheng, Xiaohai Li, Yanli Zhang, Linyan Shen, Lijuan Xiao, Yihong Zhang, Yongfan Au, Chaktong Jiang, Lilong |
description | [Display omitted]
•Shape-specific CeO2 catalysts with well-defined crystal facets were synthesized.•Ceria-shape effect on structural defects and surface chemistry was demonstrated.•CeO2-rods with porous structure exhibits optimum H2S selective oxidation activity.•Nature of active sites and reaction mechanism over CeO2 catalysts are disclosed.
Shape-specific CeO2 nanocrystals (rods, cubes, spheres and nanoparticles) with well-defined crystal facets and hierarchically porous structure were successfully synthesized and used as model catalysts to study the structure-dependent behavior and reaction mechanism for H2S selective oxidation over ceria-based catalysts. It is deduced that the defect sites and base properties of CeO2 are intrinsically determined by the surface crystal facets. Among the nanocrystals, CeO2 nanorods with well-defined {110} and {100} crystal facets exhibits superb catalytic activity and sulfur selectivity. The high reactivity for H2S selective oxidation is attributed to the high concentration of surface oxygen vacancies which are beneficial for the conversion of lattice oxygen to active oxygen species. Besides, the presence of hierarchically porous structure of CeO2 nanorods hinders the formation of SO2 and sulfate, ensuring good sulfur selectivity and catalyst stability. Through a combined approach of density-functional theory (DFT) calculations and in situ DRIFTS investigation, the plausible reaction mechanism and nature of active sites for H2S selective oxidation over CeO2 catalysts have been revealed. |
doi_str_mv | 10.1016/j.apcatb.2019.04.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237561445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319303303</els_id><sourcerecordid>2237561445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-d524cf28a74667167baf1498d5bddccbd64622e90a3da88d7e25868add6104c73</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKv_wEXA9Yz5miSzEaSoFQpdqOuQJpk2pZ2MSVrsvzdlXLt6m_Pu5R4A7jGqMcL8cVvrwei8qgnCbY1YjTC7ABMsBa2olPQSTFBLeEWpoNfgJqUtQohQIifg-N4nv95k6PscYN446LrOmQxDB_chDpuwC-sTDD0sBXp3yt7AwcUuxL3ujTtjQ4jhkODMLQnsdR9MPKWCJlggOCcfMLldSfTHQv94q7MP_S246gri7v7uFHy9vnzO5tVi-fY-e15UhmGRK9sQZjoitWCcC8zFSneYtdI2K2uNWVnOOCGuRZpaLaUVjjSSS20tx4gZQafgYcwdYvg-uJTVNhxiXyoVIVQ0HDPWFIqNlIkhpeg6NUS_1_GkMFJnw2qrRsPqbFghporh8vY0vrmy4OhdVMl4V6xYH8tgZYP_P-AXQF-H1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237561445</pqid></control><display><type>article</type><title>Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Zheng, Xiaohai ; Li, Yanli ; Zhang, Linyan ; Shen, Lijuan ; Xiao, Yihong ; Zhang, Yongfan ; Au, Chaktong ; Jiang, Lilong</creator><creatorcontrib>Zheng, Xiaohai ; Li, Yanli ; Zhang, Linyan ; Shen, Lijuan ; Xiao, Yihong ; Zhang, Yongfan ; Au, Chaktong ; Jiang, Lilong</creatorcontrib><description>[Display omitted]
•Shape-specific CeO2 catalysts with well-defined crystal facets were synthesized.•Ceria-shape effect on structural defects and surface chemistry was demonstrated.•CeO2-rods with porous structure exhibits optimum H2S selective oxidation activity.•Nature of active sites and reaction mechanism over CeO2 catalysts are disclosed.
Shape-specific CeO2 nanocrystals (rods, cubes, spheres and nanoparticles) with well-defined crystal facets and hierarchically porous structure were successfully synthesized and used as model catalysts to study the structure-dependent behavior and reaction mechanism for H2S selective oxidation over ceria-based catalysts. It is deduced that the defect sites and base properties of CeO2 are intrinsically determined by the surface crystal facets. Among the nanocrystals, CeO2 nanorods with well-defined {110} and {100} crystal facets exhibits superb catalytic activity and sulfur selectivity. The high reactivity for H2S selective oxidation is attributed to the high concentration of surface oxygen vacancies which are beneficial for the conversion of lattice oxygen to active oxygen species. Besides, the presence of hierarchically porous structure of CeO2 nanorods hinders the formation of SO2 and sulfate, ensuring good sulfur selectivity and catalyst stability. Through a combined approach of density-functional theory (DFT) calculations and in situ DRIFTS investigation, the plausible reaction mechanism and nature of active sites for H2S selective oxidation over CeO2 catalysts have been revealed.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.04.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalysis ; Catalysts ; Catalytic activity ; CeO2 catalyst ; Cerium oxides ; Chemical synthesis ; Crystal facet ; Crystal structure ; Crystals ; Cubes ; Density functional theory ; DFT calculation ; H2S selective oxidation ; Hydrogen sulfide ; Lattice vacancies ; Morphology ; Nanocrystals ; Nanoparticles ; Nanorods ; Oxidation ; Oxygen ; Oxygen vacancy ; Reaction mechanisms ; Rods ; Selectivity ; Sulfate ; Sulfur ; Sulfur dioxide</subject><ispartof>Applied catalysis. B, Environmental, 2019-09, Vol.252, p.98-110</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-d524cf28a74667167baf1498d5bddccbd64622e90a3da88d7e25868add6104c73</citedby><cites>FETCH-LOGICAL-c417t-d524cf28a74667167baf1498d5bddccbd64622e90a3da88d7e25868add6104c73</cites><orcidid>0000-0002-0081-0367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337319303303$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaohai</creatorcontrib><creatorcontrib>Li, Yanli</creatorcontrib><creatorcontrib>Zhang, Linyan</creatorcontrib><creatorcontrib>Shen, Lijuan</creatorcontrib><creatorcontrib>Xiao, Yihong</creatorcontrib><creatorcontrib>Zhang, Yongfan</creatorcontrib><creatorcontrib>Au, Chaktong</creatorcontrib><creatorcontrib>Jiang, Lilong</creatorcontrib><title>Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•Shape-specific CeO2 catalysts with well-defined crystal facets were synthesized.•Ceria-shape effect on structural defects and surface chemistry was demonstrated.•CeO2-rods with porous structure exhibits optimum H2S selective oxidation activity.•Nature of active sites and reaction mechanism over CeO2 catalysts are disclosed.
Shape-specific CeO2 nanocrystals (rods, cubes, spheres and nanoparticles) with well-defined crystal facets and hierarchically porous structure were successfully synthesized and used as model catalysts to study the structure-dependent behavior and reaction mechanism for H2S selective oxidation over ceria-based catalysts. It is deduced that the defect sites and base properties of CeO2 are intrinsically determined by the surface crystal facets. Among the nanocrystals, CeO2 nanorods with well-defined {110} and {100} crystal facets exhibits superb catalytic activity and sulfur selectivity. The high reactivity for H2S selective oxidation is attributed to the high concentration of surface oxygen vacancies which are beneficial for the conversion of lattice oxygen to active oxygen species. Besides, the presence of hierarchically porous structure of CeO2 nanorods hinders the formation of SO2 and sulfate, ensuring good sulfur selectivity and catalyst stability. Through a combined approach of density-functional theory (DFT) calculations and in situ DRIFTS investigation, the plausible reaction mechanism and nature of active sites for H2S selective oxidation over CeO2 catalysts have been revealed.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>CeO2 catalyst</subject><subject>Cerium oxides</subject><subject>Chemical synthesis</subject><subject>Crystal facet</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Cubes</subject><subject>Density functional theory</subject><subject>DFT calculation</subject><subject>H2S selective oxidation</subject><subject>Hydrogen sulfide</subject><subject>Lattice vacancies</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen vacancy</subject><subject>Reaction mechanisms</subject><subject>Rods</subject><subject>Selectivity</subject><subject>Sulfate</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKv_wEXA9Yz5miSzEaSoFQpdqOuQJpk2pZ2MSVrsvzdlXLt6m_Pu5R4A7jGqMcL8cVvrwei8qgnCbY1YjTC7ABMsBa2olPQSTFBLeEWpoNfgJqUtQohQIifg-N4nv95k6PscYN446LrOmQxDB_chDpuwC-sTDD0sBXp3yt7AwcUuxL3ujTtjQ4jhkODMLQnsdR9MPKWCJlggOCcfMLldSfTHQv94q7MP_S246gri7v7uFHy9vnzO5tVi-fY-e15UhmGRK9sQZjoitWCcC8zFSneYtdI2K2uNWVnOOCGuRZpaLaUVjjSSS20tx4gZQafgYcwdYvg-uJTVNhxiXyoVIVQ0HDPWFIqNlIkhpeg6NUS_1_GkMFJnw2qrRsPqbFghporh8vY0vrmy4OhdVMl4V6xYH8tgZYP_P-AXQF-H1w</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Zheng, Xiaohai</creator><creator>Li, Yanli</creator><creator>Zhang, Linyan</creator><creator>Shen, Lijuan</creator><creator>Xiao, Yihong</creator><creator>Zhang, Yongfan</creator><creator>Au, Chaktong</creator><creator>Jiang, Lilong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0081-0367</orcidid></search><sort><creationdate>20190905</creationdate><title>Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation</title><author>Zheng, Xiaohai ; Li, Yanli ; Zhang, Linyan ; Shen, Lijuan ; Xiao, Yihong ; Zhang, Yongfan ; Au, Chaktong ; Jiang, Lilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-d524cf28a74667167baf1498d5bddccbd64622e90a3da88d7e25868add6104c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>CeO2 catalyst</topic><topic>Cerium oxides</topic><topic>Chemical synthesis</topic><topic>Crystal facet</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Cubes</topic><topic>Density functional theory</topic><topic>DFT calculation</topic><topic>H2S selective oxidation</topic><topic>Hydrogen sulfide</topic><topic>Lattice vacancies</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen vacancy</topic><topic>Reaction mechanisms</topic><topic>Rods</topic><topic>Selectivity</topic><topic>Sulfate</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaohai</creatorcontrib><creatorcontrib>Li, Yanli</creatorcontrib><creatorcontrib>Zhang, Linyan</creatorcontrib><creatorcontrib>Shen, Lijuan</creatorcontrib><creatorcontrib>Xiao, Yihong</creatorcontrib><creatorcontrib>Zhang, Yongfan</creatorcontrib><creatorcontrib>Au, Chaktong</creatorcontrib><creatorcontrib>Jiang, Lilong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaohai</au><au>Li, Yanli</au><au>Zhang, Linyan</au><au>Shen, Lijuan</au><au>Xiao, Yihong</au><au>Zhang, Yongfan</au><au>Au, Chaktong</au><au>Jiang, Lilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-09-05</date><risdate>2019</risdate><volume>252</volume><spage>98</spage><epage>110</epage><pages>98-110</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•Shape-specific CeO2 catalysts with well-defined crystal facets were synthesized.•Ceria-shape effect on structural defects and surface chemistry was demonstrated.•CeO2-rods with porous structure exhibits optimum H2S selective oxidation activity.•Nature of active sites and reaction mechanism over CeO2 catalysts are disclosed.
Shape-specific CeO2 nanocrystals (rods, cubes, spheres and nanoparticles) with well-defined crystal facets and hierarchically porous structure were successfully synthesized and used as model catalysts to study the structure-dependent behavior and reaction mechanism for H2S selective oxidation over ceria-based catalysts. It is deduced that the defect sites and base properties of CeO2 are intrinsically determined by the surface crystal facets. Among the nanocrystals, CeO2 nanorods with well-defined {110} and {100} crystal facets exhibits superb catalytic activity and sulfur selectivity. The high reactivity for H2S selective oxidation is attributed to the high concentration of surface oxygen vacancies which are beneficial for the conversion of lattice oxygen to active oxygen species. Besides, the presence of hierarchically porous structure of CeO2 nanorods hinders the formation of SO2 and sulfate, ensuring good sulfur selectivity and catalyst stability. Through a combined approach of density-functional theory (DFT) calculations and in situ DRIFTS investigation, the plausible reaction mechanism and nature of active sites for H2S selective oxidation over CeO2 catalysts have been revealed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.04.014</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0081-0367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2019-09, Vol.252, p.98-110 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2237561445 |
source | Elsevier ScienceDirect Journals |
subjects | Catalysis Catalysts Catalytic activity CeO2 catalyst Cerium oxides Chemical synthesis Crystal facet Crystal structure Crystals Cubes Density functional theory DFT calculation H2S selective oxidation Hydrogen sulfide Lattice vacancies Morphology Nanocrystals Nanoparticles Nanorods Oxidation Oxygen Oxygen vacancy Reaction mechanisms Rods Selectivity Sulfate Sulfur Sulfur dioxide |
title | Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insight%20into%20the%20effect%20of%20morphology%20on%20catalytic%20performance%20of%20porous%20CeO2%20nanocrystals%20for%20H2S%20selective%20oxidation&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Zheng,%20Xiaohai&rft.date=2019-09-05&rft.volume=252&rft.spage=98&rft.epage=110&rft.pages=98-110&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.04.014&rft_dat=%3Cproquest_cross%3E2237561445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237561445&rft_id=info:pmid/&rft_els_id=S0926337319303303&rfr_iscdi=true |