Numerical Solution of Nonlinear Large Strain Consolidation Based on Non-Darcian Flow

In this paper, based on non-Darcian flow, the governing equation of 1D nonlinear large strain consolidation is established, which comprehensively accounts for vertical strain, soil self-weight, geometrical nonlinearity, continuity of pore water flow, the relative velocity of the fluid and solid phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-14
Hauptverfasser: Zhao, Xu-dong, Gong, Wen-hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, based on non-Darcian flow, the governing equation of 1D nonlinear large strain consolidation is established, which comprehensively accounts for vertical strain, soil self-weight, geometrical nonlinearity, continuity of pore water flow, the relative velocity of the fluid and solid phases, and changing compressibility and hydraulic conductivity during consolidation. Then the numerical solution is obtained with the finite difference method (FDM). Verification of the FDM solution shows excellent accuracy. On this basis, we investigate the influence of the non-Darcian flow on consolidation behavior. The results show that the increase of the non-Darcian exponent will accelerate the consolidation rate in the beginning, while slowing down the consolidation rate in the end. However, it has no effect on the final settlement of the soil layer. In addition, boundary drainage conditions have a huge impact on the consolidation rate, whether it is Darcian or non-Darcian flow.
ISSN:1024-123X
1563-5147
DOI:10.1155/2019/5745068