Limitations of shallow networks representing finite mappings
Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, compu...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2019-06, Vol.31 (6), p.1783-1792 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1792 |
---|---|
container_issue | 6 |
container_start_page | 1783 |
container_title | Neural computing & applications |
container_volume | 31 |
creator | Kůrková, Věra |
description | Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed. |
doi_str_mv | 10.1007/s00521-018-3680-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2236745879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2236745879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLcFz9HJ52bBixS_oOBB7yHdTWpqm6xJSvHfm7KCJ08zw7zvO8OD0BWBGwLQ3mYAQQkGojCTCjA5QjPCGcMMhDpGM-h43UrOTtFZzmsA4FKJGbpb-K0vpvgYchNdkz_MZhP3TbBlH9NnbpIdk802FB9WjfPBF9tszTjWMV-gE2c22V7-1nP09vjwPn_Gi9enl_n9AvdMdAUzKgxnFnozgFgSZQ1RnYGByGHo6xetccJx5-hyKaTrhVKMWKqIZL2t_Tm6nlLHFL92Nhe9jrsU6kFNKZMtF6rtqopMqj7FnJN1ekx-a9K3JqAPiPSESFdE-oBIk-qhkydXbVjZ9Jf8v-kHFnZpiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236745879</pqid></control><display><type>article</type><title>Limitations of shallow networks representing finite mappings</title><source>Springer Nature - Complete Springer Journals</source><creator>Kůrková, Věra</creator><creatorcontrib>Kůrková, Věra</creatorcontrib><description>Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3680-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Conditioning ; Data Mining and Knowledge Discovery ; Domains ; Image Processing and Computer Vision ; Mathematical functions ; Networks ; Polynomials ; Probability and Statistics in Computer Science ; S.i. : Eann 2017</subject><ispartof>Neural computing & applications, 2019-06, Vol.31 (6), p.1783-1792</ispartof><rights>The Natural Computing Applications Forum 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</citedby><cites>FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</cites><orcidid>0000-0002-8181-2128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3680-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3680-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kůrková, Věra</creatorcontrib><title>Limitations of shallow networks representing finite mappings</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Conditioning</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Domains</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical functions</subject><subject>Networks</subject><subject>Polynomials</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.i. : Eann 2017</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLcFz9HJ52bBixS_oOBB7yHdTWpqm6xJSvHfm7KCJ08zw7zvO8OD0BWBGwLQ3mYAQQkGojCTCjA5QjPCGcMMhDpGM-h43UrOTtFZzmsA4FKJGbpb-K0vpvgYchNdkz_MZhP3TbBlH9NnbpIdk802FB9WjfPBF9tszTjWMV-gE2c22V7-1nP09vjwPn_Gi9enl_n9AvdMdAUzKgxnFnozgFgSZQ1RnYGByGHo6xetccJx5-hyKaTrhVKMWKqIZL2t_Tm6nlLHFL92Nhe9jrsU6kFNKZMtF6rtqopMqj7FnJN1ekx-a9K3JqAPiPSESFdE-oBIk-qhkydXbVjZ9Jf8v-kHFnZpiA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Kůrková, Věra</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8181-2128</orcidid></search><sort><creationdate>20190601</creationdate><title>Limitations of shallow networks representing finite mappings</title><author>Kůrková, Věra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Conditioning</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Domains</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical functions</topic><topic>Networks</topic><topic>Polynomials</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.i. : Eann 2017</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kůrková, Věra</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kůrková, Věra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations of shallow networks representing finite mappings</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>31</volume><issue>6</issue><spage>1783</spage><epage>1792</epage><pages>1783-1792</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3680-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8181-2128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2019-06, Vol.31 (6), p.1783-1792 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2236745879 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Conditioning Data Mining and Knowledge Discovery Domains Image Processing and Computer Vision Mathematical functions Networks Polynomials Probability and Statistics in Computer Science S.i. : Eann 2017 |
title | Limitations of shallow networks representing finite mappings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20of%20shallow%20networks%20representing%20finite%20mappings&rft.jtitle=Neural%20computing%20&%20applications&rft.au=K%C5%AFrkov%C3%A1,%20V%C4%9Bra&rft.date=2019-06-01&rft.volume=31&rft.issue=6&rft.spage=1783&rft.epage=1792&rft.pages=1783-1792&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3680-1&rft_dat=%3Cproquest_cross%3E2236745879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236745879&rft_id=info:pmid/&rfr_iscdi=true |