Limitations of shallow networks representing finite mappings

Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2019-06, Vol.31 (6), p.1783-1792
1. Verfasser: Kůrková, Věra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1792
container_issue 6
container_start_page 1783
container_title Neural computing & applications
container_volume 31
creator Kůrková, Věra
description Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.
doi_str_mv 10.1007/s00521-018-3680-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2236745879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2236745879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLcFz9HJ52bBixS_oOBB7yHdTWpqm6xJSvHfm7KCJ08zw7zvO8OD0BWBGwLQ3mYAQQkGojCTCjA5QjPCGcMMhDpGM-h43UrOTtFZzmsA4FKJGbpb-K0vpvgYchNdkz_MZhP3TbBlH9NnbpIdk802FB9WjfPBF9tszTjWMV-gE2c22V7-1nP09vjwPn_Gi9enl_n9AvdMdAUzKgxnFnozgFgSZQ1RnYGByGHo6xetccJx5-hyKaTrhVKMWKqIZL2t_Tm6nlLHFL92Nhe9jrsU6kFNKZMtF6rtqopMqj7FnJN1ekx-a9K3JqAPiPSESFdE-oBIk-qhkydXbVjZ9Jf8v-kHFnZpiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236745879</pqid></control><display><type>article</type><title>Limitations of shallow networks representing finite mappings</title><source>Springer Nature - Complete Springer Journals</source><creator>Kůrková, Věra</creator><creatorcontrib>Kůrková, Věra</creatorcontrib><description>Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3680-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Conditioning ; Data Mining and Knowledge Discovery ; Domains ; Image Processing and Computer Vision ; Mathematical functions ; Networks ; Polynomials ; Probability and Statistics in Computer Science ; S.i. : Eann 2017</subject><ispartof>Neural computing &amp; applications, 2019-06, Vol.31 (6), p.1783-1792</ispartof><rights>The Natural Computing Applications Forum 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</citedby><cites>FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</cites><orcidid>0000-0002-8181-2128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3680-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3680-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kůrková, Věra</creatorcontrib><title>Limitations of shallow networks representing finite mappings</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Conditioning</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Domains</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical functions</subject><subject>Networks</subject><subject>Polynomials</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.i. : Eann 2017</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLcFz9HJ52bBixS_oOBB7yHdTWpqm6xJSvHfm7KCJ08zw7zvO8OD0BWBGwLQ3mYAQQkGojCTCjA5QjPCGcMMhDpGM-h43UrOTtFZzmsA4FKJGbpb-K0vpvgYchNdkz_MZhP3TbBlH9NnbpIdk802FB9WjfPBF9tszTjWMV-gE2c22V7-1nP09vjwPn_Gi9enl_n9AvdMdAUzKgxnFnozgFgSZQ1RnYGByGHo6xetccJx5-hyKaTrhVKMWKqIZL2t_Tm6nlLHFL92Nhe9jrsU6kFNKZMtF6rtqopMqj7FnJN1ekx-a9K3JqAPiPSESFdE-oBIk-qhkydXbVjZ9Jf8v-kHFnZpiA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Kůrková, Věra</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8181-2128</orcidid></search><sort><creationdate>20190601</creationdate><title>Limitations of shallow networks representing finite mappings</title><author>Kůrková, Věra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-325a43e0cad05b18ea189a0d16ddc6857af5f4ff2bb56fc58831e28163ce883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Conditioning</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Domains</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical functions</topic><topic>Networks</topic><topic>Polynomials</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.i. : Eann 2017</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kůrková, Věra</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kůrková, Věra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations of shallow networks representing finite mappings</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>31</volume><issue>6</issue><spage>1783</spage><epage>1792</epage><pages>1783-1792</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Limitations of capabilities of shallow networks to efficiently compute real-valued functions on finite domains are investigated. Efficiency is studied in terms of network sparsity and its approximate measures. It is shown that when a dictionary of computational units is not sufficiently large, computation of almost any uniformly randomly chosen function either represents a well-conditioned task performed by a large network or an ill-conditioned task performed by a network of a moderate size. The probabilistic results are complemented by a concrete example of a class of functions which cannot be efficiently computed by shallow perceptron networks. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections to the No Free Lunch Theorem and the central paradox of coding theory are discussed.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3680-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8181-2128</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2019-06, Vol.31 (6), p.1783-1792
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2236745879
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Conditioning
Data Mining and Knowledge Discovery
Domains
Image Processing and Computer Vision
Mathematical functions
Networks
Polynomials
Probability and Statistics in Computer Science
S.i. : Eann 2017
title Limitations of shallow networks representing finite mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A56%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20of%20shallow%20networks%20representing%20finite%20mappings&rft.jtitle=Neural%20computing%20&%20applications&rft.au=K%C5%AFrkov%C3%A1,%20V%C4%9Bra&rft.date=2019-06-01&rft.volume=31&rft.issue=6&rft.spage=1783&rft.epage=1792&rft.pages=1783-1792&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3680-1&rft_dat=%3Cproquest_cross%3E2236745879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236745879&rft_id=info:pmid/&rfr_iscdi=true