Derivation and measurement of DFR based on Gerber model under corrosive conditions

In order to study the influence of the selection of the equal life curve model on the calculation results of the detailed fatigue rating, the fitting precision of the Gerber model and the Goodman model for the high-cycle fatigue data was compared for six typical aeronautical materials. The DFR calcu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hang kong cai liao xue bao 2019-03, Vol.39 (2), p.61
Hauptverfasser: Chen, Yueliang, Wu, Xingjun, Liu, Xu, Bian, Guixue, Zhang, Yong, Wang, Andong, Huang, Hailiang, Zhang, Zhuzhu
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 61
container_title Hang kong cai liao xue bao
container_volume 39
creator Chen, Yueliang
Wu, Xingjun
Liu, Xu
Bian, Guixue
Zhang, Yong
Wang, Andong
Huang, Hailiang
Zhang, Zhuzhu
description In order to study the influence of the selection of the equal life curve model on the calculation results of the detailed fatigue rating, the fitting precision of the Gerber model and the Goodman model for the high-cycle fatigue data was compared for six typical aeronautical materials. The DFR calculation based on the Gerber model was derived. Formula, expression of corrosion conversion coefficient CC; fatigue test for pre-corrosion 0 h, 6 h, 12 h, 24 h, 36 h and 72 h for 2024-T3 aluminum alloy (surface anodization) and analysis of pre-corrosion 72 h fatigue fracture. The results show that the Gerber model is suitable for aluminum alloys such as LY12CZ, and the DFR method based on the Gerber model can exert the potential of ductile materials when N95/95 > 105 times; with the increase of pre-corrosion time, 2024-T3 aluminum alloy DFR The values decreased, and the DFR calculated based on the Gerber model were 84.251 MPa, 84.721 MPa, 79.683 MPa, 80.745 MPa, 77.026 MPa, and 74.996 MPa, respectively. The corrosion
doi_str_mv 10.11868/j.issn.1005-5053.2018.000023
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2236733668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2236733668</sourcerecordid><originalsourceid>FETCH-proquest_journals_22367336683</originalsourceid><addsrcrecordid>eNqNjMsKwjAURLNQsGj_ISAuG_OgNa59rsV9Sc0VIm2iuW2_3wji2tnMMGcYQlaCMyF0pdcP5hA9E5yXRclLxSQXmvEkqSYk-_UzkiO6hnMh5FaXOiOXPUQ3mt4FT423tAODQ4QOfE_Dne6PF9oYBEsTP0FsINIuWGjp4G3KtxBjQDdCSt66zw0uyPRuWoT863OyPB6uu3PxjOE1APb1IwzRJ1RLqaqNUlWl1X-rN22lSFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236733668</pqid></control><display><type>article</type><title>Derivation and measurement of DFR based on Gerber model under corrosive conditions</title><source>DOAJ Directory of Open Access Journals</source><creator>Chen, Yueliang ; Wu, Xingjun ; Liu, Xu ; Bian, Guixue ; Zhang, Yong ; Wang, Andong ; Huang, Hailiang ; Zhang, Zhuzhu</creator><creatorcontrib>Chen, Yueliang ; Wu, Xingjun ; Liu, Xu ; Bian, Guixue ; Zhang, Yong ; Wang, Andong ; Huang, Hailiang ; Zhang, Zhuzhu</creatorcontrib><description>In order to study the influence of the selection of the equal life curve model on the calculation results of the detailed fatigue rating, the fitting precision of the Gerber model and the Goodman model for the high-cycle fatigue data was compared for six typical aeronautical materials. The DFR calculation based on the Gerber model was derived. Formula, expression of corrosion conversion coefficient CC; fatigue test for pre-corrosion 0 h, 6 h, 12 h, 24 h, 36 h and 72 h for 2024-T3 aluminum alloy (surface anodization) and analysis of pre-corrosion 72 h fatigue fracture. The results show that the Gerber model is suitable for aluminum alloys such as LY12CZ, and the DFR method based on the Gerber model can exert the potential of ductile materials when N95/95 &gt; 105 times; with the increase of pre-corrosion time, 2024-T3 aluminum alloy DFR The values decreased, and the DFR calculated based on the Gerber model were 84.251 MPa, 84.721 MPa, 79.683 MPa, 80.745 MPa, 77.026 MPa, and 74.996 MPa, respectively. The corrosion</description><identifier>ISSN: 1005-5053</identifier><identifier>DOI: 10.11868/j.issn.1005-5053.2018.000023</identifier><language>chi</language><publisher>Beijing: Beijing Institute of Aeronautical Materials</publisher><subject>Aeronautics ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Conversion ; Corrosion ; Corrosion fatigue ; Corrosion tests ; Crack propagation ; Etch pits ; Fatigue failure ; Fatigue tests ; Fracture mechanics ; High cycle fatigue ; Inclusions ; Mathematical models ; Metal fatigue</subject><ispartof>Hang kong cai liao xue bao, 2019-03, Vol.39 (2), p.61</ispartof><rights>Copyright Beijing Institute of Aeronautical Materials Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Yueliang</creatorcontrib><creatorcontrib>Wu, Xingjun</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Bian, Guixue</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Zhang, Zhuzhu</creatorcontrib><title>Derivation and measurement of DFR based on Gerber model under corrosive conditions</title><title>Hang kong cai liao xue bao</title><description>In order to study the influence of the selection of the equal life curve model on the calculation results of the detailed fatigue rating, the fitting precision of the Gerber model and the Goodman model for the high-cycle fatigue data was compared for six typical aeronautical materials. The DFR calculation based on the Gerber model was derived. Formula, expression of corrosion conversion coefficient CC; fatigue test for pre-corrosion 0 h, 6 h, 12 h, 24 h, 36 h and 72 h for 2024-T3 aluminum alloy (surface anodization) and analysis of pre-corrosion 72 h fatigue fracture. The results show that the Gerber model is suitable for aluminum alloys such as LY12CZ, and the DFR method based on the Gerber model can exert the potential of ductile materials when N95/95 &gt; 105 times; with the increase of pre-corrosion time, 2024-T3 aluminum alloy DFR The values decreased, and the DFR calculated based on the Gerber model were 84.251 MPa, 84.721 MPa, 79.683 MPa, 80.745 MPa, 77.026 MPa, and 74.996 MPa, respectively. The corrosion</description><subject>Aeronautics</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Conversion</subject><subject>Corrosion</subject><subject>Corrosion fatigue</subject><subject>Corrosion tests</subject><subject>Crack propagation</subject><subject>Etch pits</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>High cycle fatigue</subject><subject>Inclusions</subject><subject>Mathematical models</subject><subject>Metal fatigue</subject><issn>1005-5053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAURLNQsGj_ISAuG_OgNa59rsV9Sc0VIm2iuW2_3wji2tnMMGcYQlaCMyF0pdcP5hA9E5yXRclLxSQXmvEkqSYk-_UzkiO6hnMh5FaXOiOXPUQ3mt4FT423tAODQ4QOfE_Dne6PF9oYBEsTP0FsINIuWGjp4G3KtxBjQDdCSt66zw0uyPRuWoT863OyPB6uu3PxjOE1APb1IwzRJ1RLqaqNUlWl1X-rN22lSFU</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Chen, Yueliang</creator><creator>Wu, Xingjun</creator><creator>Liu, Xu</creator><creator>Bian, Guixue</creator><creator>Zhang, Yong</creator><creator>Wang, Andong</creator><creator>Huang, Hailiang</creator><creator>Zhang, Zhuzhu</creator><general>Beijing Institute of Aeronautical Materials</general><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190301</creationdate><title>Derivation and measurement of DFR based on Gerber model under corrosive conditions</title><author>Chen, Yueliang ; Wu, Xingjun ; Liu, Xu ; Bian, Guixue ; Zhang, Yong ; Wang, Andong ; Huang, Hailiang ; Zhang, Zhuzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22367336683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2019</creationdate><topic>Aeronautics</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Conversion</topic><topic>Corrosion</topic><topic>Corrosion fatigue</topic><topic>Corrosion tests</topic><topic>Crack propagation</topic><topic>Etch pits</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>High cycle fatigue</topic><topic>Inclusions</topic><topic>Mathematical models</topic><topic>Metal fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yueliang</creatorcontrib><creatorcontrib>Wu, Xingjun</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Bian, Guixue</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Andong</creatorcontrib><creatorcontrib>Huang, Hailiang</creatorcontrib><creatorcontrib>Zhang, Zhuzhu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Hang kong cai liao xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yueliang</au><au>Wu, Xingjun</au><au>Liu, Xu</au><au>Bian, Guixue</au><au>Zhang, Yong</au><au>Wang, Andong</au><au>Huang, Hailiang</au><au>Zhang, Zhuzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and measurement of DFR based on Gerber model under corrosive conditions</atitle><jtitle>Hang kong cai liao xue bao</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>39</volume><issue>2</issue><spage>61</spage><pages>61-</pages><issn>1005-5053</issn><abstract>In order to study the influence of the selection of the equal life curve model on the calculation results of the detailed fatigue rating, the fitting precision of the Gerber model and the Goodman model for the high-cycle fatigue data was compared for six typical aeronautical materials. The DFR calculation based on the Gerber model was derived. Formula, expression of corrosion conversion coefficient CC; fatigue test for pre-corrosion 0 h, 6 h, 12 h, 24 h, 36 h and 72 h for 2024-T3 aluminum alloy (surface anodization) and analysis of pre-corrosion 72 h fatigue fracture. The results show that the Gerber model is suitable for aluminum alloys such as LY12CZ, and the DFR method based on the Gerber model can exert the potential of ductile materials when N95/95 &gt; 105 times; with the increase of pre-corrosion time, 2024-T3 aluminum alloy DFR The values decreased, and the DFR calculated based on the Gerber model were 84.251 MPa, 84.721 MPa, 79.683 MPa, 80.745 MPa, 77.026 MPa, and 74.996 MPa, respectively. The corrosion</abstract><cop>Beijing</cop><pub>Beijing Institute of Aeronautical Materials</pub><doi>10.11868/j.issn.1005-5053.2018.000023</doi></addata></record>
fulltext fulltext
identifier ISSN: 1005-5053
ispartof Hang kong cai liao xue bao, 2019-03, Vol.39 (2), p.61
issn 1005-5053
language chi
recordid cdi_proquest_journals_2236733668
source DOAJ Directory of Open Access Journals
subjects Aeronautics
Alloys
Aluminum alloys
Aluminum base alloys
Conversion
Corrosion
Corrosion fatigue
Corrosion tests
Crack propagation
Etch pits
Fatigue failure
Fatigue tests
Fracture mechanics
High cycle fatigue
Inclusions
Mathematical models
Metal fatigue
title Derivation and measurement of DFR based on Gerber model under corrosive conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20measurement%20of%20DFR%20based%20on%20Gerber%20model%20under%20corrosive%20conditions&rft.jtitle=Hang%20kong%20cai%20liao%20xue%20bao&rft.au=Chen,%20Yueliang&rft.date=2019-03-01&rft.volume=39&rft.issue=2&rft.spage=61&rft.pages=61-&rft.issn=1005-5053&rft_id=info:doi/10.11868/j.issn.1005-5053.2018.000023&rft_dat=%3Cproquest%3E2236733668%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236733668&rft_id=info:pmid/&rfr_iscdi=true