Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies

We review two approaches for improving the response in longitudinal (birth cohort) studies based on response propensity models: strategies for sample maintenance in longitudinal studies and improving the representativeness of the respondents over time through interventions. Based on estimated respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of official statistics 2017-09, Vol.33 (3), p.753-779
Hauptverfasser: Plewis, Ian, Shlomo, Natalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 3
container_start_page 753
container_title Journal of official statistics
container_volume 33
creator Plewis, Ian
Shlomo, Natalie
description We review two approaches for improving the response in longitudinal (birth cohort) studies based on response propensity models: strategies for sample maintenance in longitudinal studies and improving the representativeness of the respondents over time through interventions. Based on estimated response propensities, we examine the effectiveness of different re-issuing strategies using Representativity Indicators (R-indicators). We also combine information from the Receiver Operating Characteristic (ROC) curve with a cost function to determine an optimal cut point for the propensity not to respond in order to target interventions efficiently at cases least likely to respond. We use the first four waves of the UK Millennium Cohort Study to illustrate these methods. Our results suggest that it is worth re-issuing to the field nonresponding cases from previous waves although re-issuing refusals might not be the best use of resources. Adapting the sample to target subgroups for re-issuing from wave to wave will improve the representativeness of response. However, in situations where discrimination between respondents and nonrespondents is not strong, it is doubtful whether specific interventions to reduce nonresponse will be cost effective.
doi_str_mv 10.1515/jos-2017-0035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2236522096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1515_jos-2017-0035</sage_id><sourcerecordid>2236522096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-4a9cbbd766630fb3dfc16f56978c17f85029bb2ed9b1efdc31c3135011c7af353</originalsourceid><addsrcrecordid>eNqFkNtLwzAUh4MoOKePvgd8E6K5LMmKTzJvg4nXgW81bZPa0TU1SZX996ZU2IsghJMD5_sOhx8AxwSfEU74-cp6RDGRCGPGd8CIYkyQZELughGmU4omlL3tgwPvV5FIGCUj8L70VVPCZ-1b23gNH51tdeOrsIH3ttC1h8HC-bp19kvD8KHhU6fqfmrNVrpSQcGqgQvblFXoiqpRNXzpG-0PwZ5RtddHv_8YLG-uX2d3aPFwO59dLlDOEhLQRCV5lhVSCMGwyVhhciIMF4mc5kSaKcc0yTKqiyQj2hQ5I_ExjgnJpTKMszE4GfbGUz877UO6sp2Lh_iUUiY4pTgRkUIDlTvrvdMmbV21Vm6TEpz2IUYrCjHEtA8x8hcD_63qoF2hS9dtYrNd_rfHmIxlDE4H26tS_6f8AGf0hrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236522096</pqid></control><display><type>article</type><title>Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies</title><source>De Gruyter Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Sociological Abstracts</source><creator>Plewis, Ian ; Shlomo, Natalie</creator><creatorcontrib>Plewis, Ian ; Shlomo, Natalie</creatorcontrib><description>We review two approaches for improving the response in longitudinal (birth cohort) studies based on response propensity models: strategies for sample maintenance in longitudinal studies and improving the representativeness of the respondents over time through interventions. Based on estimated response propensities, we examine the effectiveness of different re-issuing strategies using Representativity Indicators (R-indicators). We also combine information from the Receiver Operating Characteristic (ROC) curve with a cost function to determine an optimal cut point for the propensity not to respond in order to target interventions efficiently at cases least likely to respond. We use the first four waves of the UK Millennium Cohort Study to illustrate these methods. Our results suggest that it is worth re-issuing to the field nonresponding cases from previous waves although re-issuing refusals might not be the best use of resources. Adapting the sample to target subgroups for re-issuing from wave to wave will improve the representativeness of response. However, in situations where discrimination between respondents and nonrespondents is not strong, it is doubtful whether specific interventions to reduce nonresponse will be cost effective.</description><identifier>ISSN: 0282-423X</identifier><identifier>ISSN: 2001-7367</identifier><identifier>EISSN: 2001-7367</identifier><identifier>DOI: 10.1515/jos-2017-0035</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cohort analysis ; Correlation analysis ; Discrimination ; Indicators ; Intervention ; Longitudinal studies ; Millennium Cohort Study ; nonresponse ; Representativity indicators ; ROC curves ; Subgroups</subject><ispartof>Journal of official statistics, 2017-09, Vol.33 (3), p.753-779</ispartof><rights>2017 Ian Plewis et al., published by De Gruyter Open</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-4a9cbbd766630fb3dfc16f56978c17f85029bb2ed9b1efdc31c3135011c7af353</citedby><cites>FETCH-LOGICAL-c391t-4a9cbbd766630fb3dfc16f56978c17f85029bb2ed9b1efdc31c3135011c7af353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1515/jos-2017-0035$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1515/jos-2017-0035$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21964,27342,27851,27922,27923,33772,44943,45331,66928,68712</link.rule.ids></links><search><creatorcontrib>Plewis, Ian</creatorcontrib><creatorcontrib>Shlomo, Natalie</creatorcontrib><title>Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies</title><title>Journal of official statistics</title><description>We review two approaches for improving the response in longitudinal (birth cohort) studies based on response propensity models: strategies for sample maintenance in longitudinal studies and improving the representativeness of the respondents over time through interventions. Based on estimated response propensities, we examine the effectiveness of different re-issuing strategies using Representativity Indicators (R-indicators). We also combine information from the Receiver Operating Characteristic (ROC) curve with a cost function to determine an optimal cut point for the propensity not to respond in order to target interventions efficiently at cases least likely to respond. We use the first four waves of the UK Millennium Cohort Study to illustrate these methods. Our results suggest that it is worth re-issuing to the field nonresponding cases from previous waves although re-issuing refusals might not be the best use of resources. Adapting the sample to target subgroups for re-issuing from wave to wave will improve the representativeness of response. However, in situations where discrimination between respondents and nonrespondents is not strong, it is doubtful whether specific interventions to reduce nonresponse will be cost effective.</description><subject>Cohort analysis</subject><subject>Correlation analysis</subject><subject>Discrimination</subject><subject>Indicators</subject><subject>Intervention</subject><subject>Longitudinal studies</subject><subject>Millennium Cohort Study</subject><subject>nonresponse</subject><subject>Representativity indicators</subject><subject>ROC curves</subject><subject>Subgroups</subject><issn>0282-423X</issn><issn>2001-7367</issn><issn>2001-7367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkNtLwzAUh4MoOKePvgd8E6K5LMmKTzJvg4nXgW81bZPa0TU1SZX996ZU2IsghJMD5_sOhx8AxwSfEU74-cp6RDGRCGPGd8CIYkyQZELughGmU4omlL3tgwPvV5FIGCUj8L70VVPCZ-1b23gNH51tdeOrsIH3ttC1h8HC-bp19kvD8KHhU6fqfmrNVrpSQcGqgQvblFXoiqpRNXzpG-0PwZ5RtddHv_8YLG-uX2d3aPFwO59dLlDOEhLQRCV5lhVSCMGwyVhhciIMF4mc5kSaKcc0yTKqiyQj2hQ5I_ExjgnJpTKMszE4GfbGUz877UO6sp2Lh_iUUiY4pTgRkUIDlTvrvdMmbV21Vm6TEpz2IUYrCjHEtA8x8hcD_63qoF2hS9dtYrNd_rfHmIxlDE4H26tS_6f8AGf0hrU</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Plewis, Ian</creator><creator>Shlomo, Natalie</creator><general>SAGE Publications</general><general>De Gruyter Open</general><general>Statistics Sweden (SCB)</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7XB</scope><scope>88J</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>L6V</scope><scope>M2R</scope><scope>M2S</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>20170901</creationdate><title>Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies</title><author>Plewis, Ian ; Shlomo, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-4a9cbbd766630fb3dfc16f56978c17f85029bb2ed9b1efdc31c3135011c7af353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cohort analysis</topic><topic>Correlation analysis</topic><topic>Discrimination</topic><topic>Indicators</topic><topic>Intervention</topic><topic>Longitudinal studies</topic><topic>Millennium Cohort Study</topic><topic>nonresponse</topic><topic>Representativity indicators</topic><topic>ROC curves</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plewis, Ian</creatorcontrib><creatorcontrib>Shlomo, Natalie</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Journal of official statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plewis, Ian</au><au>Shlomo, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies</atitle><jtitle>Journal of official statistics</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>33</volume><issue>3</issue><spage>753</spage><epage>779</epage><pages>753-779</pages><issn>0282-423X</issn><issn>2001-7367</issn><eissn>2001-7367</eissn><abstract>We review two approaches for improving the response in longitudinal (birth cohort) studies based on response propensity models: strategies for sample maintenance in longitudinal studies and improving the representativeness of the respondents over time through interventions. Based on estimated response propensities, we examine the effectiveness of different re-issuing strategies using Representativity Indicators (R-indicators). We also combine information from the Receiver Operating Characteristic (ROC) curve with a cost function to determine an optimal cut point for the propensity not to respond in order to target interventions efficiently at cases least likely to respond. We use the first four waves of the UK Millennium Cohort Study to illustrate these methods. Our results suggest that it is worth re-issuing to the field nonresponding cases from previous waves although re-issuing refusals might not be the best use of resources. Adapting the sample to target subgroups for re-issuing from wave to wave will improve the representativeness of response. However, in situations where discrimination between respondents and nonrespondents is not strong, it is doubtful whether specific interventions to reduce nonresponse will be cost effective.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1515/jos-2017-0035</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0282-423X
ispartof Journal of official statistics, 2017-09, Vol.33 (3), p.753-779
issn 0282-423X
2001-7367
2001-7367
language eng
recordid cdi_proquest_journals_2236522096
source De Gruyter Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Sociological Abstracts
subjects Cohort analysis
Correlation analysis
Discrimination
Indicators
Intervention
Longitudinal studies
Millennium Cohort Study
nonresponse
Representativity indicators
ROC curves
Subgroups
title Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Response%20Propensity%20Models%20to%20Improve%20the%20Quality%20of%20Response%20Data%20in%20Longitudinal%20Studies&rft.jtitle=Journal%20of%20official%20statistics&rft.au=Plewis,%20Ian&rft.date=2017-09-01&rft.volume=33&rft.issue=3&rft.spage=753&rft.epage=779&rft.pages=753-779&rft.issn=0282-423X&rft.eissn=2001-7367&rft_id=info:doi/10.1515/jos-2017-0035&rft_dat=%3Cproquest_cross%3E2236522096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236522096&rft_id=info:pmid/&rft_sage_id=10.1515_jos-2017-0035&rfr_iscdi=true