First-Principles Calculations of Thermoelectric PbSe2 Compound to Predict its Elastic Properties
The influencing effect of pressure on structural stability and elastic properties of PbSe2 compound is mainly investigated by first-principles method and homogenization method of the Y parameter. The optimized structural parameters at zero pressure are a=b=6.446Å, c=7.887Å (GGA method) and a=b=6.316...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2019-06, Vol.956, p.46-54 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influencing effect of pressure on structural stability and elastic properties of PbSe2 compound is mainly investigated by first-principles method and homogenization method of the Y parameter. The optimized structural parameters at zero pressure are a=b=6.446Å, c=7.887Å (GGA method) and a=b=6.316Å, c=7.651Å (LDA method), which has good agreement with the experimental and theoretical values. Our calculated lattice parameters and Se-Se bond length are in excellent agreement with experimental data. PbSe2 compound is energetically stable with a good alloying ability. The elastic constants are calculated, and then the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and anisotropy factor are determined. Besides, Y parameter method is used to investigate changes of the Poisson ratio, Young’s and shear moduli of PbSe2 within different normal orientation crystal planes. Results show that: 1) Young’s modulus is about 48.37 GPa from GGA and 58.87 GPa from LDA by Reuss-Voigt-Hill estimation, which is averaged about 53.62 GPa; 2) The PbSe2 compound is ductile according to B/G ratio. The universal anisotropic index AU shows that PbSe2 exhibits a fairly high elastic anisotropy. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.956.46 |