Contact Problem for an Anisotropic Half Plane with Cracks

We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-07, Vol.240 (2), p.173-183
Hauptverfasser: Maksymovych, O. V., Lavrenchuk, S. V., Solyar, T. Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 173
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 240
creator Maksymovych, O. V.
Lavrenchuk, S. V.
Solyar, T. Ya
description We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed.
doi_str_mv 10.1007/s10958-019-04345-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2236208650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601323985</galeid><sourcerecordid>A601323985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRUKt_wNOCJw-pSWaT7B7LorYgWPw4h2w2qavbpCZb1H9vtIIUiswhQ3iezJA3y84IHhOMxWUkuGIlwqRCuICCIdjLjggTgEpRsf3UY0ERgCgOs-MYX3CSeAlHWVV7Nyg95PPgm94sc-tDrlw-cV30Q_CrTudT1dt83itn8vdueM7roPRrPMkOrOqjOf09R9nT9dVjPUW3dzezenKLNAgAVBVUAG8VZ6ZtSsKJbawWGAhwDgC0YrpQmLVcFMxWlhnGuMaKCts2uBEERtn55t1V8G9rEwf54tfBpZGSUuAUl5zhP2qheiM7Z9PySi-7qOWEYwIUqpIlCu2gFsaZoHrvjO3S9RY_3sGnas2y0zuFiy0hMYP5GBZqHaOcPdxvs3TD6uBjDMbKVeiWKnxKguV3qnKTqkypyp9UJSQJNlJMsFuY8Pcb_1hfU8WfUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236208650</pqid></control><display><type>article</type><title>Contact Problem for an Anisotropic Half Plane with Cracks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maksymovych, O. V. ; Lavrenchuk, S. V. ; Solyar, T. Ya</creator><creatorcontrib>Maksymovych, O. V. ; Lavrenchuk, S. V. ; Solyar, T. Ya</creatorcontrib><description>We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04345-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anisotropy ; Contact stresses ; Cracks ; Integral equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Stress intensity factors</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2019-07, Vol.240 (2), p.173-183</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</citedby><cites>FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-019-04345-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-019-04345-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maksymovych, O. V.</creatorcontrib><creatorcontrib>Lavrenchuk, S. V.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><title>Contact Problem for an Anisotropic Half Plane with Cracks</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed.</description><subject>Anisotropy</subject><subject>Contact stresses</subject><subject>Cracks</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stress intensity factors</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRUKt_wNOCJw-pSWaT7B7LorYgWPw4h2w2qavbpCZb1H9vtIIUiswhQ3iezJA3y84IHhOMxWUkuGIlwqRCuICCIdjLjggTgEpRsf3UY0ERgCgOs-MYX3CSeAlHWVV7Nyg95PPgm94sc-tDrlw-cV30Q_CrTudT1dt83itn8vdueM7roPRrPMkOrOqjOf09R9nT9dVjPUW3dzezenKLNAgAVBVUAG8VZ6ZtSsKJbawWGAhwDgC0YrpQmLVcFMxWlhnGuMaKCts2uBEERtn55t1V8G9rEwf54tfBpZGSUuAUl5zhP2qheiM7Z9PySi-7qOWEYwIUqpIlCu2gFsaZoHrvjO3S9RY_3sGnas2y0zuFiy0hMYP5GBZqHaOcPdxvs3TD6uBjDMbKVeiWKnxKguV3qnKTqkypyp9UJSQJNlJMsFuY8Pcb_1hfU8WfUg</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Maksymovych, O. V.</creator><creator>Lavrenchuk, S. V.</creator><creator>Solyar, T. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190704</creationdate><title>Contact Problem for an Anisotropic Half Plane with Cracks</title><author>Maksymovych, O. V. ; Lavrenchuk, S. V. ; Solyar, T. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Contact stresses</topic><topic>Cracks</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksymovych, O. V.</creatorcontrib><creatorcontrib>Lavrenchuk, S. V.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksymovych, O. V.</au><au>Lavrenchuk, S. V.</au><au>Solyar, T. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact Problem for an Anisotropic Half Plane with Cracks</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2019-07-04</date><risdate>2019</risdate><volume>240</volume><issue>2</issue><spage>173</spage><epage>183</epage><pages>173-183</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-019-04345-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2019-07, Vol.240 (2), p.173-183
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2236208650
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Contact stresses
Cracks
Integral equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Stress intensity factors
title Contact Problem for an Anisotropic Half Plane with Cracks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact%20Problem%20for%20an%20Anisotropic%20Half%20Plane%20with%20Cracks&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Maksymovych,%20O.%20V.&rft.date=2019-07-04&rft.volume=240&rft.issue=2&rft.spage=173&rft.epage=183&rft.pages=173-183&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04345-3&rft_dat=%3Cgale_proqu%3EA601323985%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236208650&rft_id=info:pmid/&rft_galeid=A601323985&rfr_iscdi=true