Contact Problem for an Anisotropic Half Plane with Cracks
We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equation...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-07, Vol.240 (2), p.173-183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 2 |
container_start_page | 173 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 240 |
creator | Maksymovych, O. V. Lavrenchuk, S. V. Solyar, T. Ya |
description | We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed. |
doi_str_mv | 10.1007/s10958-019-04345-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2236208650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601323985</galeid><sourcerecordid>A601323985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhhdRUKt_wNOCJw-pSWaT7B7LorYgWPw4h2w2qavbpCZb1H9vtIIUiswhQ3iezJA3y84IHhOMxWUkuGIlwqRCuICCIdjLjggTgEpRsf3UY0ERgCgOs-MYX3CSeAlHWVV7Nyg95PPgm94sc-tDrlw-cV30Q_CrTudT1dt83itn8vdueM7roPRrPMkOrOqjOf09R9nT9dVjPUW3dzezenKLNAgAVBVUAG8VZ6ZtSsKJbawWGAhwDgC0YrpQmLVcFMxWlhnGuMaKCts2uBEERtn55t1V8G9rEwf54tfBpZGSUuAUl5zhP2qheiM7Z9PySi-7qOWEYwIUqpIlCu2gFsaZoHrvjO3S9RY_3sGnas2y0zuFiy0hMYP5GBZqHaOcPdxvs3TD6uBjDMbKVeiWKnxKguV3qnKTqkypyp9UJSQJNlJMsFuY8Pcb_1hfU8WfUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236208650</pqid></control><display><type>article</type><title>Contact Problem for an Anisotropic Half Plane with Cracks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maksymovych, O. V. ; Lavrenchuk, S. V. ; Solyar, T. Ya</creator><creatorcontrib>Maksymovych, O. V. ; Lavrenchuk, S. V. ; Solyar, T. Ya</creatorcontrib><description>We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-019-04345-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anisotropy ; Contact stresses ; Cracks ; Integral equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Stress intensity factors</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2019-07, Vol.240 (2), p.173-183</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</citedby><cites>FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-019-04345-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-019-04345-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maksymovych, O. V.</creatorcontrib><creatorcontrib>Lavrenchuk, S. V.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><title>Contact Problem for an Anisotropic Half Plane with Cracks</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed.</description><subject>Anisotropy</subject><subject>Contact stresses</subject><subject>Cracks</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stress intensity factors</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU1LAzEQhhdRUKt_wNOCJw-pSWaT7B7LorYgWPw4h2w2qavbpCZb1H9vtIIUiswhQ3iezJA3y84IHhOMxWUkuGIlwqRCuICCIdjLjggTgEpRsf3UY0ERgCgOs-MYX3CSeAlHWVV7Nyg95PPgm94sc-tDrlw-cV30Q_CrTudT1dt83itn8vdueM7roPRrPMkOrOqjOf09R9nT9dVjPUW3dzezenKLNAgAVBVUAG8VZ6ZtSsKJbawWGAhwDgC0YrpQmLVcFMxWlhnGuMaKCts2uBEERtn55t1V8G9rEwf54tfBpZGSUuAUl5zhP2qheiM7Z9PySi-7qOWEYwIUqpIlCu2gFsaZoHrvjO3S9RY_3sGnas2y0zuFiy0hMYP5GBZqHaOcPdxvs3TD6uBjDMbKVeiWKnxKguV3qnKTqkypyp9UJSQJNlJMsFuY8Pcb_1hfU8WfUg</recordid><startdate>20190704</startdate><enddate>20190704</enddate><creator>Maksymovych, O. V.</creator><creator>Lavrenchuk, S. V.</creator><creator>Solyar, T. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190704</creationdate><title>Contact Problem for an Anisotropic Half Plane with Cracks</title><author>Maksymovych, O. V. ; Lavrenchuk, S. V. ; Solyar, T. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-942736da65edb8161fbfc7031366333295c4a05d6745f9f5e556c0a27fdb0b713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Contact stresses</topic><topic>Cracks</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksymovych, O. V.</creatorcontrib><creatorcontrib>Lavrenchuk, S. V.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksymovych, O. V.</au><au>Lavrenchuk, S. V.</au><au>Solyar, T. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contact Problem for an Anisotropic Half Plane with Cracks</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2019-07-04</date><risdate>2019</risdate><volume>240</volume><issue>2</issue><spage>173</spage><epage>183</epage><pages>173-183</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We propose an approach for the solution of a contact problem for an anisotropic half plane interacting with a plane smooth punch with regard for the contact of the crack faces. The stresses formed near the cracks in the anisotropic half plane are found on the basis of the method of integral equations. The kernels of the equations are constructed to guarantee the identical validity of the conditions imposed on the rectilinear boundary of the half plane, including the area under the punch. The influences of anisotropy and the contact of crack faces on the stress intensity factors are analyzed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-019-04345-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2019-07, Vol.240 (2), p.173-183 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2236208650 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Contact stresses Cracks Integral equations Mathematical analysis Mathematics Mathematics and Statistics Stress intensity factors |
title | Contact Problem for an Anisotropic Half Plane with Cracks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contact%20Problem%20for%20an%20Anisotropic%20Half%20Plane%20with%20Cracks&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Maksymovych,%20O.%20V.&rft.date=2019-07-04&rft.volume=240&rft.issue=2&rft.spage=173&rft.epage=183&rft.pages=173-183&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-019-04345-3&rft_dat=%3Cgale_proqu%3EA601323985%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236208650&rft_id=info:pmid/&rft_galeid=A601323985&rfr_iscdi=true |