SP-10K: A Large-scale Evaluation Set for Selectional Preference Acquisition
Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a large-scale evaluation set that provides human ratings for the plausibility of 10,000...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Hongming Ding, Hantian Song, Yangqiu |
description | Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a large-scale evaluation set that provides human ratings for the plausibility of 10,000 SP pairs over five SP relations, covering 2,500 most frequent verbs, nouns, and adjectives in American English. Three representative SP acquisition methods based on pseudo-disambiguation are evaluated with SP-10K. To demonstrate the importance of our dataset, we investigate the relationship between SP-10K and the commonsense knowledge in ConceptNet5 and show the potential of using SP to represent the commonsense knowledge. We also use the Winograd Schema Challenge to prove that the proposed new SP relations are essential for the hard pronoun coreference resolution problem. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2235952960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235952960</sourcerecordid><originalsourceid>FETCH-proquest_journals_22359529603</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7DLoezH_NsjsJI7ALQe9ljN9QhsvN9fwp9ABdHfjOdzYkAiESdjkB7Ejs_cA5h_QMUoqIlHXFEl5eaU6fyr2Qea0M0uKjTFBzb0da40w76xYa1OuiDK0cduhw1EhzPYXe96s4kG2njMf4xz053ovm9mBvZ6eAfm4HG9zS-xZAyExClnLx3-sLG7k7ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235952960</pqid></control><display><type>article</type><title>SP-10K: A Large-scale Evaluation Set for Selectional Preference Acquisition</title><source>Free E- Journals</source><creator>Zhang, Hongming ; Ding, Hantian ; Song, Yangqiu</creator><creatorcontrib>Zhang, Hongming ; Ding, Hantian ; Song, Yangqiu</creatorcontrib><description>Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a large-scale evaluation set that provides human ratings for the plausibility of 10,000 SP pairs over five SP relations, covering 2,500 most frequent verbs, nouns, and adjectives in American English. Three representative SP acquisition methods based on pseudo-disambiguation are evaluated with SP-10K. To demonstrate the importance of our dataset, we investigate the relationship between SP-10K and the commonsense knowledge in ConceptNet5 and show the potential of using SP to represent the commonsense knowledge. We also use the Winograd Schema Challenge to prove that the proposed new SP relations are essential for the hard pronoun coreference resolution problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Natural language processing</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Ding, Hantian</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><title>SP-10K: A Large-scale Evaluation Set for Selectional Preference Acquisition</title><title>arXiv.org</title><description>Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a large-scale evaluation set that provides human ratings for the plausibility of 10,000 SP pairs over five SP relations, covering 2,500 most frequent verbs, nouns, and adjectives in American English. Three representative SP acquisition methods based on pseudo-disambiguation are evaluated with SP-10K. To demonstrate the importance of our dataset, we investigate the relationship between SP-10K and the commonsense knowledge in ConceptNet5 and show the potential of using SP to represent the commonsense knowledge. We also use the Winograd Schema Challenge to prove that the proposed new SP relations are essential for the hard pronoun coreference resolution problem.</description><subject>Natural language processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7DLoezH_NsjsJI7ALQe9ljN9QhsvN9fwp9ABdHfjOdzYkAiESdjkB7Ejs_cA5h_QMUoqIlHXFEl5eaU6fyr2Qea0M0uKjTFBzb0da40w76xYa1OuiDK0cduhw1EhzPYXe96s4kG2njMf4xz053ovm9mBvZ6eAfm4HG9zS-xZAyExClnLx3-sLG7k7ww</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>Zhang, Hongming</creator><creator>Ding, Hantian</creator><creator>Song, Yangqiu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190514</creationdate><title>SP-10K: A Large-scale Evaluation Set for Selectional Preference Acquisition</title><author>Zhang, Hongming ; Ding, Hantian ; Song, Yangqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22359529603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Natural language processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongming</creatorcontrib><creatorcontrib>Ding, Hantian</creatorcontrib><creatorcontrib>Song, Yangqiu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongming</au><au>Ding, Hantian</au><au>Song, Yangqiu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SP-10K: A Large-scale Evaluation Set for Selectional Preference Acquisition</atitle><jtitle>arXiv.org</jtitle><date>2019-05-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Selectional Preference (SP) is a commonly observed language phenomenon and proved to be useful in many natural language processing tasks. To provide a better evaluation method for SP models, we introduce SP-10K, a large-scale evaluation set that provides human ratings for the plausibility of 10,000 SP pairs over five SP relations, covering 2,500 most frequent verbs, nouns, and adjectives in American English. Three representative SP acquisition methods based on pseudo-disambiguation are evaluated with SP-10K. To demonstrate the importance of our dataset, we investigate the relationship between SP-10K and the commonsense knowledge in ConceptNet5 and show the potential of using SP to represent the commonsense knowledge. We also use the Winograd Schema Challenge to prove that the proposed new SP relations are essential for the hard pronoun coreference resolution problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2235952960 |
source | Free E- Journals |
subjects | Natural language processing |
title | SP-10K: A Large-scale Evaluation Set for Selectional Preference Acquisition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SP-10K:%20A%20Large-scale%20Evaluation%20Set%20for%20Selectional%20Preference%20Acquisition&rft.jtitle=arXiv.org&rft.au=Zhang,%20Hongming&rft.date=2019-05-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2235952960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235952960&rft_id=info:pmid/&rfr_iscdi=true |