CONVOLUTION FORMULA AS A STIELTJES RESULTANT

In pursuit of the number-theoretic nature of a given set, one defines an arithmetic function and considers its average behavior in view of the fact that independent values are rather singular. We are interested in the asymptotic formula for the summatory function of an arithmetic function which is g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyushu Journal of Mathematics 2018, Vol.72(2), pp.429-439
Hauptverfasser: BANERJEE, Soumyarup, KANEMITSU, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 439
container_issue 2
container_start_page 429
container_title Kyushu Journal of Mathematics
container_volume 72
creator BANERJEE, Soumyarup
KANEMITSU, Shigeru
description In pursuit of the number-theoretic nature of a given set, one defines an arithmetic function and considers its average behavior in view of the fact that independent values are rather singular. We are interested in the asymptotic formula for the summatory function of an arithmetic function which is given as the coefficients of the product of two generating Dirichlet series, i.e. they are convolutions of the respective coefficients. Our main purpose is to elucidate the far-reaching theorem of Lau in the light of the Stieltjes resultant and to give some applications which involve possible logarithmic singularities.
doi_str_mv 10.2206/kyushujm.72.429
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235711730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235711730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-3d2260b1772f082c7886fefef6e6c3ded8620e69059d6ac9fe64038fddd49ad03</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhiMEEmNw5lqJK90Sp0vTY5m6MVRWaW25RiFJ2cq-SNrD_j2dNiYhH2zJz2tLD0KPBA8AMBt-H1q3bOvNIIRBANEV6hHOqQ-YwnU30wD7jBB2i-6cqzGmjAPtoedxNv_I0rKYZXNvki3eyzT24tyLvbyYJWnxluTeIsnLtIjnxT26qeTamYdz76NykhTjVz_NprNxnPoqCKLGpxqA4U8ShlBhDirknFWmK2aYotpozgAbFuFRpJlUUWVYgCmvtNZBJDWmffR0uru3u5_WuEbUu9Zuu5cCgI5CQkJ6pIYnStmdc9ZUYm9XG2kPgmBxVCL-lIgQRKekS7ycErVr5Je58NI2K7U2_3g4hy5LtZRWmC39BbBuamY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235711730</pqid></control><display><type>article</type><title>CONVOLUTION FORMULA AS A STIELTJES RESULTANT</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>BANERJEE, Soumyarup ; KANEMITSU, Shigeru</creator><creatorcontrib>BANERJEE, Soumyarup ; KANEMITSU, Shigeru</creatorcontrib><description>In pursuit of the number-theoretic nature of a given set, one defines an arithmetic function and considers its average behavior in view of the fact that independent values are rather singular. We are interested in the asymptotic formula for the summatory function of an arithmetic function which is given as the coefficients of the product of two generating Dirichlet series, i.e. they are convolutions of the respective coefficients. Our main purpose is to elucidate the far-reaching theorem of Lau in the light of the Stieltjes resultant and to give some applications which involve possible logarithmic singularities.</description><identifier>ISSN: 1340-6116</identifier><identifier>EISSN: 1883-2032</identifier><identifier>DOI: 10.2206/kyushujm.72.429</identifier><language>eng</language><publisher>Hukuoka: Faculty of Mathematics, Kyushu University</publisher><subject>Arithmetic ; asymptotic formula ; Convolution ; Dirichlet convolution ; Dirichlet problem ; generating Dirichlet series ; Mathematical functions ; Singularity (mathematics) ; Stieltjes resultant</subject><ispartof>Kyushu Journal of Mathematics, 2018, Vol.72(2), pp.429-439</ispartof><rights>2018 Faculty of Mathematics, Kyushu University</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c449t-3d2260b1772f082c7886fefef6e6c3ded8620e69059d6ac9fe64038fddd49ad03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>BANERJEE, Soumyarup</creatorcontrib><creatorcontrib>KANEMITSU, Shigeru</creatorcontrib><title>CONVOLUTION FORMULA AS A STIELTJES RESULTANT</title><title>Kyushu Journal of Mathematics</title><addtitle>Kyushu J. Math.</addtitle><description>In pursuit of the number-theoretic nature of a given set, one defines an arithmetic function and considers its average behavior in view of the fact that independent values are rather singular. We are interested in the asymptotic formula for the summatory function of an arithmetic function which is given as the coefficients of the product of two generating Dirichlet series, i.e. they are convolutions of the respective coefficients. Our main purpose is to elucidate the far-reaching theorem of Lau in the light of the Stieltjes resultant and to give some applications which involve possible logarithmic singularities.</description><subject>Arithmetic</subject><subject>asymptotic formula</subject><subject>Convolution</subject><subject>Dirichlet convolution</subject><subject>Dirichlet problem</subject><subject>generating Dirichlet series</subject><subject>Mathematical functions</subject><subject>Singularity (mathematics)</subject><subject>Stieltjes resultant</subject><issn>1340-6116</issn><issn>1883-2032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkE1PwzAMhiMEEmNw5lqJK90Sp0vTY5m6MVRWaW25RiFJ2cq-SNrD_j2dNiYhH2zJz2tLD0KPBA8AMBt-H1q3bOvNIIRBANEV6hHOqQ-YwnU30wD7jBB2i-6cqzGmjAPtoedxNv_I0rKYZXNvki3eyzT24tyLvbyYJWnxluTeIsnLtIjnxT26qeTamYdz76NykhTjVz_NprNxnPoqCKLGpxqA4U8ShlBhDirknFWmK2aYotpozgAbFuFRpJlUUWVYgCmvtNZBJDWmffR0uru3u5_WuEbUu9Zuu5cCgI5CQkJ6pIYnStmdc9ZUYm9XG2kPgmBxVCL-lIgQRKekS7ycErVr5Je58NI2K7U2_3g4hy5LtZRWmC39BbBuamY</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>BANERJEE, Soumyarup</creator><creator>KANEMITSU, Shigeru</creator><general>Faculty of Mathematics, Kyushu University</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2018</creationdate><title>CONVOLUTION FORMULA AS A STIELTJES RESULTANT</title><author>BANERJEE, Soumyarup ; KANEMITSU, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-3d2260b1772f082c7886fefef6e6c3ded8620e69059d6ac9fe64038fddd49ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arithmetic</topic><topic>asymptotic formula</topic><topic>Convolution</topic><topic>Dirichlet convolution</topic><topic>Dirichlet problem</topic><topic>generating Dirichlet series</topic><topic>Mathematical functions</topic><topic>Singularity (mathematics)</topic><topic>Stieltjes resultant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BANERJEE, Soumyarup</creatorcontrib><creatorcontrib>KANEMITSU, Shigeru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Kyushu Journal of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BANERJEE, Soumyarup</au><au>KANEMITSU, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONVOLUTION FORMULA AS A STIELTJES RESULTANT</atitle><jtitle>Kyushu Journal of Mathematics</jtitle><addtitle>Kyushu J. Math.</addtitle><date>2018</date><risdate>2018</risdate><volume>72</volume><issue>2</issue><spage>429</spage><epage>439</epage><pages>429-439</pages><issn>1340-6116</issn><eissn>1883-2032</eissn><abstract>In pursuit of the number-theoretic nature of a given set, one defines an arithmetic function and considers its average behavior in view of the fact that independent values are rather singular. We are interested in the asymptotic formula for the summatory function of an arithmetic function which is given as the coefficients of the product of two generating Dirichlet series, i.e. they are convolutions of the respective coefficients. Our main purpose is to elucidate the far-reaching theorem of Lau in the light of the Stieltjes resultant and to give some applications which involve possible logarithmic singularities.</abstract><cop>Hukuoka</cop><pub>Faculty of Mathematics, Kyushu University</pub><doi>10.2206/kyushujm.72.429</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1340-6116
ispartof Kyushu Journal of Mathematics, 2018, Vol.72(2), pp.429-439
issn 1340-6116
1883-2032
language eng
recordid cdi_proquest_journals_2235711730
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Arithmetic
asymptotic formula
Convolution
Dirichlet convolution
Dirichlet problem
generating Dirichlet series
Mathematical functions
Singularity (mathematics)
Stieltjes resultant
title CONVOLUTION FORMULA AS A STIELTJES RESULTANT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONVOLUTION%20FORMULA%20AS%20A%20STIELTJES%20RESULTANT&rft.jtitle=Kyushu%20Journal%20of%20Mathematics&rft.au=BANERJEE,%20Soumyarup&rft.date=2018&rft.volume=72&rft.issue=2&rft.spage=429&rft.epage=439&rft.pages=429-439&rft.issn=1340-6116&rft.eissn=1883-2032&rft_id=info:doi/10.2206/kyushujm.72.429&rft_dat=%3Cproquest_cross%3E2235711730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235711730&rft_id=info:pmid/&rfr_iscdi=true