Effect of Strain on the Formation of a MAX Phase in Ti–Al–C Materials during Self-Propagating High Temperature Synthesis and Extrusion

— This paper presents numerical modeling results and experimental data on thermal conditions in Ti–Al–C MAX phase-based materials during self-propagating high-temperature synthesis (SHS) and extrusion. Based on a mathematical model for the thermal conditions of SHS extrusion, which makes it possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic materials 2019-03, Vol.55 (3), p.302-307
Hauptverfasser: Bazhin, P. M., Stel’makh, L. S., Stolin, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 3
container_start_page 302
container_title Inorganic materials
container_volume 55
creator Bazhin, P. M.
Stel’makh, L. S.
Stolin, A. M.
description — This paper presents numerical modeling results and experimental data on thermal conditions in Ti–Al–C MAX phase-based materials during self-propagating high-temperature synthesis (SHS) and extrusion. Based on a mathematical model for the thermal conditions of SHS extrusion, which makes it possible to analyze longitudinal and radial temperature profiles in an extruded sample with a model composition (64.2 wt % Ti + 27.1 wt % Al + 8.7 wt % C), we make recommendations as to favorable conditions for MAX phase formation in relation to strain, predict such conditions, and qualitatively compare the theoretical results and experimental data. We examine the effect of the delay time before compaction on the surface defect density of the samples and the effect of strain on the structure and surface quality of the extruded materials. Samples 10 mm in diameter are shown to be free of titanium carbide, whereas samples 5 and 8 mm in diameter contain 6–8 wt % titanium carbide.
doi_str_mv 10.1134/S0020168519030051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235687192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235687192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e0eb4fccbae3a29989ef81f91a1507bf11b03f5c4cba9205a84f766f2703a44b3</originalsourceid><addsrcrecordid>eNp1UE9LwzAUD6LgnH4AbwHP1ZekaZvjGNMJGw46wVtJu2TL2NqapOBunr36Df0kpkzwIF7e473fP_ghdE3glhAW3-UAFEiScSKAAXByggYkgSxiJKWnaNDDUY-fowvntgAQ80wM0MdEa1V53GiceytNjZsa-43C943dS2_CFSCJ56MXvNhIp3CgLM3X--doF8YYz6VX1sidw6vOmnqNc7XT0cI2rVwHfXhMzXqDl2rfKit9ZxXOD3VIcMZhWa_w5M3bzoWgS3Smg4-6-tlD9Hw_WY6n0ezp4XE8mkUV48xHClQZ66oqpWKSCpEJpTOiBZGEQ1pqQkpgmldxYAgKXGaxTpNE0xSYjOOSDdHN0be1zWunnC-2TWfrEFlQyniSpUTQwCJHVmUb56zSRWvNXtpDQaDoKy_-VB409KhxbV-Fsr_O_4u-AbB1hRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235687192</pqid></control><display><type>article</type><title>Effect of Strain on the Formation of a MAX Phase in Ti–Al–C Materials during Self-Propagating High Temperature Synthesis and Extrusion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bazhin, P. M. ; Stel’makh, L. S. ; Stolin, A. M.</creator><creatorcontrib>Bazhin, P. M. ; Stel’makh, L. S. ; Stolin, A. M.</creatorcontrib><description>— This paper presents numerical modeling results and experimental data on thermal conditions in Ti–Al–C MAX phase-based materials during self-propagating high-temperature synthesis (SHS) and extrusion. Based on a mathematical model for the thermal conditions of SHS extrusion, which makes it possible to analyze longitudinal and radial temperature profiles in an extruded sample with a model composition (64.2 wt % Ti + 27.1 wt % Al + 8.7 wt % C), we make recommendations as to favorable conditions for MAX phase formation in relation to strain, predict such conditions, and qualitatively compare the theoretical results and experimental data. We examine the effect of the delay time before compaction on the surface defect density of the samples and the effect of strain on the structure and surface quality of the extruded materials. Samples 10 mm in diameter are shown to be free of titanium carbide, whereas samples 5 and 8 mm in diameter contain 6–8 wt % titanium carbide.</description><identifier>ISSN: 0020-1685</identifier><identifier>EISSN: 1608-3172</identifier><identifier>DOI: 10.1134/S0020168519030051</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Chemistry ; Chemistry and Materials Science ; Delay time ; Extrusion ; High temperature ; Industrial Chemistry/Chemical Engineering ; Inorganic Chemistry ; Materials Science ; Mathematical models ; Self propagating high temperature synthesis ; Surface defects ; Surface properties ; Temperature profiles ; Titanium carbide</subject><ispartof>Inorganic materials, 2019-03, Vol.55 (3), p.302-307</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e0eb4fccbae3a29989ef81f91a1507bf11b03f5c4cba9205a84f766f2703a44b3</citedby><cites>FETCH-LOGICAL-c353t-e0eb4fccbae3a29989ef81f91a1507bf11b03f5c4cba9205a84f766f2703a44b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0020168519030051$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0020168519030051$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bazhin, P. M.</creatorcontrib><creatorcontrib>Stel’makh, L. S.</creatorcontrib><creatorcontrib>Stolin, A. M.</creatorcontrib><title>Effect of Strain on the Formation of a MAX Phase in Ti–Al–C Materials during Self-Propagating High Temperature Synthesis and Extrusion</title><title>Inorganic materials</title><addtitle>Inorg Mater</addtitle><description>— This paper presents numerical modeling results and experimental data on thermal conditions in Ti–Al–C MAX phase-based materials during self-propagating high-temperature synthesis (SHS) and extrusion. Based on a mathematical model for the thermal conditions of SHS extrusion, which makes it possible to analyze longitudinal and radial temperature profiles in an extruded sample with a model composition (64.2 wt % Ti + 27.1 wt % Al + 8.7 wt % C), we make recommendations as to favorable conditions for MAX phase formation in relation to strain, predict such conditions, and qualitatively compare the theoretical results and experimental data. We examine the effect of the delay time before compaction on the surface defect density of the samples and the effect of strain on the structure and surface quality of the extruded materials. Samples 10 mm in diameter are shown to be free of titanium carbide, whereas samples 5 and 8 mm in diameter contain 6–8 wt % titanium carbide.</description><subject>Aluminum</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Delay time</subject><subject>Extrusion</subject><subject>High temperature</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Inorganic Chemistry</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Self propagating high temperature synthesis</subject><subject>Surface defects</subject><subject>Surface properties</subject><subject>Temperature profiles</subject><subject>Titanium carbide</subject><issn>0020-1685</issn><issn>1608-3172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE9LwzAUD6LgnH4AbwHP1ZekaZvjGNMJGw46wVtJu2TL2NqapOBunr36Df0kpkzwIF7e473fP_ghdE3glhAW3-UAFEiScSKAAXByggYkgSxiJKWnaNDDUY-fowvntgAQ80wM0MdEa1V53GiceytNjZsa-43C943dS2_CFSCJ56MXvNhIp3CgLM3X--doF8YYz6VX1sidw6vOmnqNc7XT0cI2rVwHfXhMzXqDl2rfKit9ZxXOD3VIcMZhWa_w5M3bzoWgS3Smg4-6-tlD9Hw_WY6n0ezp4XE8mkUV48xHClQZ66oqpWKSCpEJpTOiBZGEQ1pqQkpgmldxYAgKXGaxTpNE0xSYjOOSDdHN0be1zWunnC-2TWfrEFlQyniSpUTQwCJHVmUb56zSRWvNXtpDQaDoKy_-VB409KhxbV-Fsr_O_4u-AbB1hRA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Bazhin, P. M.</creator><creator>Stel’makh, L. S.</creator><creator>Stolin, A. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Effect of Strain on the Formation of a MAX Phase in Ti–Al–C Materials during Self-Propagating High Temperature Synthesis and Extrusion</title><author>Bazhin, P. M. ; Stel’makh, L. S. ; Stolin, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e0eb4fccbae3a29989ef81f91a1507bf11b03f5c4cba9205a84f766f2703a44b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Delay time</topic><topic>Extrusion</topic><topic>High temperature</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Inorganic Chemistry</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Self propagating high temperature synthesis</topic><topic>Surface defects</topic><topic>Surface properties</topic><topic>Temperature profiles</topic><topic>Titanium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazhin, P. M.</creatorcontrib><creatorcontrib>Stel’makh, L. S.</creatorcontrib><creatorcontrib>Stolin, A. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazhin, P. M.</au><au>Stel’makh, L. S.</au><au>Stolin, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Strain on the Formation of a MAX Phase in Ti–Al–C Materials during Self-Propagating High Temperature Synthesis and Extrusion</atitle><jtitle>Inorganic materials</jtitle><stitle>Inorg Mater</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>55</volume><issue>3</issue><spage>302</spage><epage>307</epage><pages>302-307</pages><issn>0020-1685</issn><eissn>1608-3172</eissn><abstract>— This paper presents numerical modeling results and experimental data on thermal conditions in Ti–Al–C MAX phase-based materials during self-propagating high-temperature synthesis (SHS) and extrusion. Based on a mathematical model for the thermal conditions of SHS extrusion, which makes it possible to analyze longitudinal and radial temperature profiles in an extruded sample with a model composition (64.2 wt % Ti + 27.1 wt % Al + 8.7 wt % C), we make recommendations as to favorable conditions for MAX phase formation in relation to strain, predict such conditions, and qualitatively compare the theoretical results and experimental data. We examine the effect of the delay time before compaction on the surface defect density of the samples and the effect of strain on the structure and surface quality of the extruded materials. Samples 10 mm in diameter are shown to be free of titanium carbide, whereas samples 5 and 8 mm in diameter contain 6–8 wt % titanium carbide.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0020168519030051</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1685
ispartof Inorganic materials, 2019-03, Vol.55 (3), p.302-307
issn 0020-1685
1608-3172
language eng
recordid cdi_proquest_journals_2235687192
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Chemistry
Chemistry and Materials Science
Delay time
Extrusion
High temperature
Industrial Chemistry/Chemical Engineering
Inorganic Chemistry
Materials Science
Mathematical models
Self propagating high temperature synthesis
Surface defects
Surface properties
Temperature profiles
Titanium carbide
title Effect of Strain on the Formation of a MAX Phase in Ti–Al–C Materials during Self-Propagating High Temperature Synthesis and Extrusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Strain%20on%20the%20Formation%20of%20a%20MAX%20Phase%20in%20Ti%E2%80%93Al%E2%80%93C%20Materials%20during%20Self-Propagating%20High%20Temperature%20Synthesis%20and%20Extrusion&rft.jtitle=Inorganic%20materials&rft.au=Bazhin,%20P.%20M.&rft.date=2019-03-01&rft.volume=55&rft.issue=3&rft.spage=302&rft.epage=307&rft.pages=302-307&rft.issn=0020-1685&rft.eissn=1608-3172&rft_id=info:doi/10.1134/S0020168519030051&rft_dat=%3Cproquest_cross%3E2235687192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235687192&rft_id=info:pmid/&rfr_iscdi=true