Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation

Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of High Pressure Science and Technology 2018, Vol.28(3), pp.184-192
Hauptverfasser: YAMADA, Ikuya, TAKAMATSU, Akihiko, IKENO, Hidekazu, YAGI, Shunsuke
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 3
container_start_page 184
container_title The Review of High Pressure Science and Technology
container_volume 28
creator YAMADA, Ikuya
TAKAMATSU, Akihiko
IKENO, Hidekazu
YAGI, Shunsuke
description Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials.
doi_str_mv 10.4131/jshpreview.28.184
format Article
fullrecord <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2235679254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235679254</sourcerecordid><originalsourceid>FETCH-LOGICAL-j159t-5a03b9f92ebee42247485e82d2f94d55878843449a8ae386fa6e6bfd4ed151cf3</originalsourceid><addsrcrecordid>eNpFUMtKw0AUHUTBUvsB7gKuUzOvZGap1VqhPvAB7sIkuWkmpEmcmVTi1zulopt74dzz4B6EznE0Z5jiy9pWvYGdhq85EXMs2BGaYMpEiCWLjtEkkjgJYyo_TtHMWp1FhOI4EYRPUP_Y7aAJFsqpZrTOBq9j6yqw-huKIBuDld5U4bMBawcDwQO4qisC1RbBC6jc6a71WF6pVtttcK2sF3loqY11XqXbXPcNWG_f5EOj9vwzdFKqxsLsd0_R-_L2bbEK109394urdVhjLl3IVUQzWUoCGQAjhCVMcBCkIKVkBeciEYJRxqQSCqiISxVDnJUFgwJznJd0ii4Ovr3pPgewLq27wbQ-MiWE8jiRhDPPujmwauvUBtLe6K0yY6qM03kD6X-zKREp3Q9f79_Zf25SaOkPUm15yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235679254</pqid></control><display><type>article</type><title>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</title><source>Alma/SFX Local Collection</source><creator>YAMADA, Ikuya ; TAKAMATSU, Akihiko ; IKENO, Hidekazu ; YAGI, Shunsuke</creator><creatorcontrib>YAMADA, Ikuya ; TAKAMATSU, Akihiko ; IKENO, Hidekazu ; YAGI, Shunsuke</creatorcontrib><description>Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials.</description><identifier>ISSN: 0917-639X</identifier><identifier>EISSN: 1348-1940</identifier><identifier>DOI: 10.4131/jshpreview.28.184</identifier><language>jpn</language><publisher>Tokyo: The Japan Society of High Pressure Science and Technology</publisher><subject>bifunctional catalyst ; Catalysis ; Catalysts ; Catalytic activity ; Chemical evolution ; Chemical reduction ; Chemical synthesis ; Comparative studies ; Dependence ; DFT calculation ; First principles ; high-pressure synthesis ; Manganese ; Mathematical analysis ; oxygen evolution reaction catalyst ; oxygen reduction reaction catalyst ; Perovskites ; Pressure effects ; quadruple perovskite oxide ; Reaction mechanisms ; Transition metal oxides ; Transition metals</subject><ispartof>The Review of High Pressure Science and Technology, 2018, Vol.28(3), pp.184-192</ispartof><rights>2018 The Japan Society of High Pressure Science and Technology</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>YAMADA, Ikuya</creatorcontrib><creatorcontrib>TAKAMATSU, Akihiko</creatorcontrib><creatorcontrib>IKENO, Hidekazu</creatorcontrib><creatorcontrib>YAGI, Shunsuke</creatorcontrib><title>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</title><title>The Review of High Pressure Science and Technology</title><description>Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials.</description><subject>bifunctional catalyst</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical evolution</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Comparative studies</subject><subject>Dependence</subject><subject>DFT calculation</subject><subject>First principles</subject><subject>high-pressure synthesis</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>oxygen evolution reaction catalyst</subject><subject>oxygen reduction reaction catalyst</subject><subject>Perovskites</subject><subject>Pressure effects</subject><subject>quadruple perovskite oxide</subject><subject>Reaction mechanisms</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><issn>0917-639X</issn><issn>1348-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFUMtKw0AUHUTBUvsB7gKuUzOvZGap1VqhPvAB7sIkuWkmpEmcmVTi1zulopt74dzz4B6EznE0Z5jiy9pWvYGdhq85EXMs2BGaYMpEiCWLjtEkkjgJYyo_TtHMWp1FhOI4EYRPUP_Y7aAJFsqpZrTOBq9j6yqw-huKIBuDld5U4bMBawcDwQO4qisC1RbBC6jc6a71WF6pVtttcK2sF3loqY11XqXbXPcNWG_f5EOj9vwzdFKqxsLsd0_R-_L2bbEK109394urdVhjLl3IVUQzWUoCGQAjhCVMcBCkIKVkBeciEYJRxqQSCqiISxVDnJUFgwJznJd0ii4Ovr3pPgewLq27wbQ-MiWE8jiRhDPPujmwauvUBtLe6K0yY6qM03kD6X-zKREp3Q9f79_Zf25SaOkPUm15yw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>YAMADA, Ikuya</creator><creator>TAKAMATSU, Akihiko</creator><creator>IKENO, Hidekazu</creator><creator>YAGI, Shunsuke</creator><general>The Japan Society of High Pressure Science and Technology</general><general>Japan Science and Technology Agency</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2018</creationdate><title>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</title><author>YAMADA, Ikuya ; TAKAMATSU, Akihiko ; IKENO, Hidekazu ; YAGI, Shunsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j159t-5a03b9f92ebee42247485e82d2f94d55878843449a8ae386fa6e6bfd4ed151cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2018</creationdate><topic>bifunctional catalyst</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical evolution</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Comparative studies</topic><topic>Dependence</topic><topic>DFT calculation</topic><topic>First principles</topic><topic>high-pressure synthesis</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>oxygen evolution reaction catalyst</topic><topic>oxygen reduction reaction catalyst</topic><topic>Perovskites</topic><topic>Pressure effects</topic><topic>quadruple perovskite oxide</topic><topic>Reaction mechanisms</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><toplevel>online_resources</toplevel><creatorcontrib>YAMADA, Ikuya</creatorcontrib><creatorcontrib>TAKAMATSU, Akihiko</creatorcontrib><creatorcontrib>IKENO, Hidekazu</creatorcontrib><creatorcontrib>YAGI, Shunsuke</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Review of High Pressure Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAMADA, Ikuya</au><au>TAKAMATSU, Akihiko</au><au>IKENO, Hidekazu</au><au>YAGI, Shunsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</atitle><jtitle>The Review of High Pressure Science and Technology</jtitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>184</spage><epage>192</epage><pages>184-192</pages><issn>0917-639X</issn><eissn>1348-1940</eissn><abstract>Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials.</abstract><cop>Tokyo</cop><pub>The Japan Society of High Pressure Science and Technology</pub><doi>10.4131/jshpreview.28.184</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0917-639X
ispartof The Review of High Pressure Science and Technology, 2018, Vol.28(3), pp.184-192
issn 0917-639X
1348-1940
language jpn
recordid cdi_proquest_journals_2235679254
source Alma/SFX Local Collection
subjects bifunctional catalyst
Catalysis
Catalysts
Catalytic activity
Chemical evolution
Chemical reduction
Chemical synthesis
Comparative studies
Dependence
DFT calculation
First principles
high-pressure synthesis
Manganese
Mathematical analysis
oxygen evolution reaction catalyst
oxygen reduction reaction catalyst
Perovskites
Pressure effects
quadruple perovskite oxide
Reaction mechanisms
Transition metal oxides
Transition metals
title Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Catalysts%20Synthesized%20by%20High-Pressure%20Method%20and%20Reaction%20Mechanism%20Based%20on%20First-Principles%20Calculation&rft.jtitle=The%20Review%20of%20High%20Pressure%20Science%20and%20Technology&rft.au=YAMADA,%20Ikuya&rft.date=2018&rft.volume=28&rft.issue=3&rft.spage=184&rft.epage=192&rft.pages=184-192&rft.issn=0917-639X&rft.eissn=1348-1940&rft_id=info:doi/10.4131/jshpreview.28.184&rft_dat=%3Cproquest_jstag%3E2235679254%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235679254&rft_id=info:pmid/&rfr_iscdi=true