Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation
Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxid...
Gespeichert in:
Veröffentlicht in: | The Review of High Pressure Science and Technology 2018, Vol.28(3), pp.184-192 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 3 |
container_start_page | 184 |
container_title | The Review of High Pressure Science and Technology |
container_volume | 28 |
creator | YAMADA, Ikuya TAKAMATSU, Akihiko IKENO, Hidekazu YAGI, Shunsuke |
description | Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials. |
doi_str_mv | 10.4131/jshpreview.28.184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_journals_2235679254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235679254</sourcerecordid><originalsourceid>FETCH-LOGICAL-j159t-5a03b9f92ebee42247485e82d2f94d55878843449a8ae386fa6e6bfd4ed151cf3</originalsourceid><addsrcrecordid>eNpFUMtKw0AUHUTBUvsB7gKuUzOvZGap1VqhPvAB7sIkuWkmpEmcmVTi1zulopt74dzz4B6EznE0Z5jiy9pWvYGdhq85EXMs2BGaYMpEiCWLjtEkkjgJYyo_TtHMWp1FhOI4EYRPUP_Y7aAJFsqpZrTOBq9j6yqw-huKIBuDld5U4bMBawcDwQO4qisC1RbBC6jc6a71WF6pVtttcK2sF3loqY11XqXbXPcNWG_f5EOj9vwzdFKqxsLsd0_R-_L2bbEK109394urdVhjLl3IVUQzWUoCGQAjhCVMcBCkIKVkBeciEYJRxqQSCqiISxVDnJUFgwJznJd0ii4Ovr3pPgewLq27wbQ-MiWE8jiRhDPPujmwauvUBtLe6K0yY6qM03kD6X-zKREp3Q9f79_Zf25SaOkPUm15yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235679254</pqid></control><display><type>article</type><title>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</title><source>Alma/SFX Local Collection</source><creator>YAMADA, Ikuya ; TAKAMATSU, Akihiko ; IKENO, Hidekazu ; YAGI, Shunsuke</creator><creatorcontrib>YAMADA, Ikuya ; TAKAMATSU, Akihiko ; IKENO, Hidekazu ; YAGI, Shunsuke</creatorcontrib><description>Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials.</description><identifier>ISSN: 0917-639X</identifier><identifier>EISSN: 1348-1940</identifier><identifier>DOI: 10.4131/jshpreview.28.184</identifier><language>jpn</language><publisher>Tokyo: The Japan Society of High Pressure Science and Technology</publisher><subject>bifunctional catalyst ; Catalysis ; Catalysts ; Catalytic activity ; Chemical evolution ; Chemical reduction ; Chemical synthesis ; Comparative studies ; Dependence ; DFT calculation ; First principles ; high-pressure synthesis ; Manganese ; Mathematical analysis ; oxygen evolution reaction catalyst ; oxygen reduction reaction catalyst ; Perovskites ; Pressure effects ; quadruple perovskite oxide ; Reaction mechanisms ; Transition metal oxides ; Transition metals</subject><ispartof>The Review of High Pressure Science and Technology, 2018, Vol.28(3), pp.184-192</ispartof><rights>2018 The Japan Society of High Pressure Science and Technology</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>YAMADA, Ikuya</creatorcontrib><creatorcontrib>TAKAMATSU, Akihiko</creatorcontrib><creatorcontrib>IKENO, Hidekazu</creatorcontrib><creatorcontrib>YAGI, Shunsuke</creatorcontrib><title>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</title><title>The Review of High Pressure Science and Technology</title><description>Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials.</description><subject>bifunctional catalyst</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical evolution</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Comparative studies</subject><subject>Dependence</subject><subject>DFT calculation</subject><subject>First principles</subject><subject>high-pressure synthesis</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>oxygen evolution reaction catalyst</subject><subject>oxygen reduction reaction catalyst</subject><subject>Perovskites</subject><subject>Pressure effects</subject><subject>quadruple perovskite oxide</subject><subject>Reaction mechanisms</subject><subject>Transition metal oxides</subject><subject>Transition metals</subject><issn>0917-639X</issn><issn>1348-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFUMtKw0AUHUTBUvsB7gKuUzOvZGap1VqhPvAB7sIkuWkmpEmcmVTi1zulopt74dzz4B6EznE0Z5jiy9pWvYGdhq85EXMs2BGaYMpEiCWLjtEkkjgJYyo_TtHMWp1FhOI4EYRPUP_Y7aAJFsqpZrTOBq9j6yqw-huKIBuDld5U4bMBawcDwQO4qisC1RbBC6jc6a71WF6pVtttcK2sF3loqY11XqXbXPcNWG_f5EOj9vwzdFKqxsLsd0_R-_L2bbEK109394urdVhjLl3IVUQzWUoCGQAjhCVMcBCkIKVkBeciEYJRxqQSCqiISxVDnJUFgwJznJd0ii4Ovr3pPgewLq27wbQ-MiWE8jiRhDPPujmwauvUBtLe6K0yY6qM03kD6X-zKREp3Q9f79_Zf25SaOkPUm15yw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>YAMADA, Ikuya</creator><creator>TAKAMATSU, Akihiko</creator><creator>IKENO, Hidekazu</creator><creator>YAGI, Shunsuke</creator><general>The Japan Society of High Pressure Science and Technology</general><general>Japan Science and Technology Agency</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2018</creationdate><title>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</title><author>YAMADA, Ikuya ; TAKAMATSU, Akihiko ; IKENO, Hidekazu ; YAGI, Shunsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j159t-5a03b9f92ebee42247485e82d2f94d55878843449a8ae386fa6e6bfd4ed151cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2018</creationdate><topic>bifunctional catalyst</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical evolution</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Comparative studies</topic><topic>Dependence</topic><topic>DFT calculation</topic><topic>First principles</topic><topic>high-pressure synthesis</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>oxygen evolution reaction catalyst</topic><topic>oxygen reduction reaction catalyst</topic><topic>Perovskites</topic><topic>Pressure effects</topic><topic>quadruple perovskite oxide</topic><topic>Reaction mechanisms</topic><topic>Transition metal oxides</topic><topic>Transition metals</topic><toplevel>online_resources</toplevel><creatorcontrib>YAMADA, Ikuya</creatorcontrib><creatorcontrib>TAKAMATSU, Akihiko</creatorcontrib><creatorcontrib>IKENO, Hidekazu</creatorcontrib><creatorcontrib>YAGI, Shunsuke</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Review of High Pressure Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAMADA, Ikuya</au><au>TAKAMATSU, Akihiko</au><au>IKENO, Hidekazu</au><au>YAGI, Shunsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation</atitle><jtitle>The Review of High Pressure Science and Technology</jtitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>184</spage><epage>192</epage><pages>184-192</pages><issn>0917-639X</issn><eissn>1348-1940</eissn><abstract>Recent advances in high-pressure synthesis and theoretical investigation of novel transition metal oxide catalysts for oxygen evolution/reduction reactions (OER/ORRs) are reviewed. Valence dependence of OER catalysis for perovskite oxides are demonstrated by comparative study of iron perovskite oxides synthesized under high pressure. Structure effects on OER catalytic activity are investigated in manganese oxides with simple ABO3-type and quadruple AA′3B4O12-type structures. In addition to intrinsic high ORR activities, electrochemical experiments display that OER activities of quadruple perovskites AMn7O12 (A=Ca, La) are superior to those of simple perovskite AMnO3 counterparts, leading to OER/ORR bifunctional catalysis. Theoretical calculations propose a OER mechanism for quadruple manganese perovskite oxide, in which adsorption sites bridging between A′- and B-site Mn atoms play a crucial role in lowering OER overpotentials.</abstract><cop>Tokyo</cop><pub>The Japan Society of High Pressure Science and Technology</pub><doi>10.4131/jshpreview.28.184</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0917-639X |
ispartof | The Review of High Pressure Science and Technology, 2018, Vol.28(3), pp.184-192 |
issn | 0917-639X 1348-1940 |
language | jpn |
recordid | cdi_proquest_journals_2235679254 |
source | Alma/SFX Local Collection |
subjects | bifunctional catalyst Catalysis Catalysts Catalytic activity Chemical evolution Chemical reduction Chemical synthesis Comparative studies Dependence DFT calculation First principles high-pressure synthesis Manganese Mathematical analysis oxygen evolution reaction catalyst oxygen reduction reaction catalyst Perovskites Pressure effects quadruple perovskite oxide Reaction mechanisms Transition metal oxides Transition metals |
title | Novel Catalysts Synthesized by High-Pressure Method and Reaction Mechanism Based on First-Principles Calculation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Catalysts%20Synthesized%20by%20High-Pressure%20Method%20and%20Reaction%20Mechanism%20Based%20on%20First-Principles%20Calculation&rft.jtitle=The%20Review%20of%20High%20Pressure%20Science%20and%20Technology&rft.au=YAMADA,%20Ikuya&rft.date=2018&rft.volume=28&rft.issue=3&rft.spage=184&rft.epage=192&rft.pages=184-192&rft.issn=0917-639X&rft.eissn=1348-1940&rft_id=info:doi/10.4131/jshpreview.28.184&rft_dat=%3Cproquest_jstag%3E2235679254%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235679254&rft_id=info:pmid/&rfr_iscdi=true |