Nanobiotechnology approaches for engineering smart plant sensors

Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2019-06, Vol.14 (6), p.541-553
Hauptverfasser: Giraldo, Juan Pablo, Wu, Honghong, Newkirk, Gregory Michael, Kruss, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 6
container_start_page 541
container_title Nature nanotechnology
container_volume 14
creator Giraldo, Juan Pablo
Wu, Honghong
Newkirk, Gregory Michael
Kruss, Sebastian
description Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity.
doi_str_mv 10.1038/s41565-019-0470-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235651350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235651350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EoqXwACwoEnPAx5fY2UAVN6mCBWbLcexe1NrBToe-Pa5SysR0zvDf9CF0DfgOMJX3iQGveImhLjETuKxO0BgEkyWlNT89_lKM0EVKK4w5qQk7RyMKUEks6Rg9vGsfmmXorVn4sA7zXaG7LgZtFjYVLsTC-vnSWxuXfl6kjY590a2174tkfQoxXaIzp9fJXh3uBH09P31OX8vZx8vb9HFWGiZ4XzYNaMaNcFYL7QxridGAnXO2lq3U2NWVMxVwScBxLoCYBhzmglYtYIMZnaDbITeP-97a1KtV2EafKxUhNGMAynFWwaAyMaQUrVNdXObROwVY7ZmpgZnKzNSemaqy5-aQvG02tj06fiFlARkEqdtTsPGv-v_UH-7Sd6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235651350</pqid></control><display><type>article</type><title>Nanobiotechnology approaches for engineering smart plant sensors</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Giraldo, Juan Pablo ; Wu, Honghong ; Newkirk, Gregory Michael ; Kruss, Sebastian</creator><creatorcontrib>Giraldo, Juan Pablo ; Wu, Honghong ; Newkirk, Gregory Michael ; Kruss, Sebastian</creatorcontrib><description>Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-019-0470-6</identifier><identifier>PMID: 31168083</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/350 ; 631/61/350/1057 ; 631/61/350/2093 ; 631/61/350/354 ; 631/61/350/59 ; Agricultural industry ; Agricultural production ; Agrochemicals ; Biosensing Techniques - methods ; Biotechnology - methods ; Chemistry and Materials Science ; Coding ; Crop Production - methods ; Crops, Agricultural - genetics ; Crops, Agricultural - growth &amp; development ; Electronic devices ; Electronic equipment ; Genetic code ; Humans ; Materials Science ; Nanomaterials ; Nanotechnology ; Nanotechnology - methods ; Nanotechnology and Microengineering ; New technology ; Optical communication ; Optimization ; Organic chemistry ; Parameter sensitivity ; Performance assessment ; Phenotyping ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth &amp; development ; Productivity ; R&amp;D ; Research &amp; development ; Resource efficiency ; Review Article ; Sensors ; Smart sensors ; Temporal resolution</subject><ispartof>Nature nanotechnology, 2019-06, Vol.14 (6), p.541-553</ispartof><rights>Springer Nature Limited 2019</rights><rights>Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043</citedby><cites>FETCH-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043</cites><orcidid>0000-0002-1154-7787 ; 0000-0001-6629-0280 ; 0000-0002-8400-8944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31168083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giraldo, Juan Pablo</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Newkirk, Gregory Michael</creatorcontrib><creatorcontrib>Kruss, Sebastian</creatorcontrib><title>Nanobiotechnology approaches for engineering smart plant sensors</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity.</description><subject>631/61/350</subject><subject>631/61/350/1057</subject><subject>631/61/350/2093</subject><subject>631/61/350/354</subject><subject>631/61/350/59</subject><subject>Agricultural industry</subject><subject>Agricultural production</subject><subject>Agrochemicals</subject><subject>Biosensing Techniques - methods</subject><subject>Biotechnology - methods</subject><subject>Chemistry and Materials Science</subject><subject>Coding</subject><subject>Crop Production - methods</subject><subject>Crops, Agricultural - genetics</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Genetic code</subject><subject>Humans</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology and Microengineering</subject><subject>New technology</subject><subject>Optical communication</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Parameter sensitivity</subject><subject>Performance assessment</subject><subject>Phenotyping</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Productivity</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Resource efficiency</subject><subject>Review Article</subject><subject>Sensors</subject><subject>Smart sensors</subject><subject>Temporal resolution</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLtOwzAUhi0EoqXwACwoEnPAx5fY2UAVN6mCBWbLcexe1NrBToe-Pa5SysR0zvDf9CF0DfgOMJX3iQGveImhLjETuKxO0BgEkyWlNT89_lKM0EVKK4w5qQk7RyMKUEks6Rg9vGsfmmXorVn4sA7zXaG7LgZtFjYVLsTC-vnSWxuXfl6kjY590a2174tkfQoxXaIzp9fJXh3uBH09P31OX8vZx8vb9HFWGiZ4XzYNaMaNcFYL7QxridGAnXO2lq3U2NWVMxVwScBxLoCYBhzmglYtYIMZnaDbITeP-97a1KtV2EafKxUhNGMAynFWwaAyMaQUrVNdXObROwVY7ZmpgZnKzNSemaqy5-aQvG02tj06fiFlARkEqdtTsPGv-v_UH-7Sd6o</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Giraldo, Juan Pablo</creator><creator>Wu, Honghong</creator><creator>Newkirk, Gregory Michael</creator><creator>Kruss, Sebastian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1154-7787</orcidid><orcidid>https://orcid.org/0000-0001-6629-0280</orcidid><orcidid>https://orcid.org/0000-0002-8400-8944</orcidid></search><sort><creationdate>20190601</creationdate><title>Nanobiotechnology approaches for engineering smart plant sensors</title><author>Giraldo, Juan Pablo ; Wu, Honghong ; Newkirk, Gregory Michael ; Kruss, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-bb1a45c7fea7afc4d2ca10fffe98d8a0f96fc615821f55712cb1f05736d10c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/61/350</topic><topic>631/61/350/1057</topic><topic>631/61/350/2093</topic><topic>631/61/350/354</topic><topic>631/61/350/59</topic><topic>Agricultural industry</topic><topic>Agricultural production</topic><topic>Agrochemicals</topic><topic>Biosensing Techniques - methods</topic><topic>Biotechnology - methods</topic><topic>Chemistry and Materials Science</topic><topic>Coding</topic><topic>Crop Production - methods</topic><topic>Crops, Agricultural - genetics</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Genetic code</topic><topic>Humans</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology and Microengineering</topic><topic>New technology</topic><topic>Optical communication</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Parameter sensitivity</topic><topic>Performance assessment</topic><topic>Phenotyping</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Productivity</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Resource efficiency</topic><topic>Review Article</topic><topic>Sensors</topic><topic>Smart sensors</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giraldo, Juan Pablo</creatorcontrib><creatorcontrib>Wu, Honghong</creatorcontrib><creatorcontrib>Newkirk, Gregory Michael</creatorcontrib><creatorcontrib>Kruss, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giraldo, Juan Pablo</au><au>Wu, Honghong</au><au>Newkirk, Gregory Michael</au><au>Kruss, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanobiotechnology approaches for engineering smart plant sensors</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>541</spage><epage>553</epage><pages>541-553</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use. Nanotechnology can be used to create smart plant sensors that could eventually improve agricultural productivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31168083</pmid><doi>10.1038/s41565-019-0470-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1154-7787</orcidid><orcidid>https://orcid.org/0000-0001-6629-0280</orcidid><orcidid>https://orcid.org/0000-0002-8400-8944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2019-06, Vol.14 (6), p.541-553
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_2235651350
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/61/350
631/61/350/1057
631/61/350/2093
631/61/350/354
631/61/350/59
Agricultural industry
Agricultural production
Agrochemicals
Biosensing Techniques - methods
Biotechnology - methods
Chemistry and Materials Science
Coding
Crop Production - methods
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
Electronic devices
Electronic equipment
Genetic code
Humans
Materials Science
Nanomaterials
Nanotechnology
Nanotechnology - methods
Nanotechnology and Microengineering
New technology
Optical communication
Optimization
Organic chemistry
Parameter sensitivity
Performance assessment
Phenotyping
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Productivity
R&D
Research & development
Resource efficiency
Review Article
Sensors
Smart sensors
Temporal resolution
title Nanobiotechnology approaches for engineering smart plant sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanobiotechnology%20approaches%20for%20engineering%20smart%20plant%20sensors&rft.jtitle=Nature%20nanotechnology&rft.au=Giraldo,%20Juan%20Pablo&rft.date=2019-06-01&rft.volume=14&rft.issue=6&rft.spage=541&rft.epage=553&rft.pages=541-553&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-019-0470-6&rft_dat=%3Cproquest_cross%3E2235651350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235651350&rft_id=info:pmid/31168083&rfr_iscdi=true