Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem
In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging...
Gespeichert in:
Veröffentlicht in: | TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 2017, Vol.60(1), pp.10-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 10 |
container_title | TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES |
container_volume | 60 |
creator | YAMAZAKI, Wataru SUGA, Yuki |
description | In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space. |
doi_str_mv | 10.2322/tjsass.60.10 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235567372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235567372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqWw4wMssSXF7yTLUp5SJUC0KxbW1LGpqzQJtrPo35OqqGIzI809M3d0EbqmZMI4Y3dpEyHGiSITSk7QiNGizAQj8hSNiBRlxgtKz9FFjBtCOJd5MUJfs3bbQfCxbXDr8LIxNiTwTdrhjx6a5J03kPygTrsutGDWNmLfYMCffWfDsOYNvvddDY3FUx9c62v8HtpVbbeX6MxBHe3VXx-j5dPjYvaSzd-eX2fTeWZEIVMmraCFA1HxVc6EENYVlbKKEDCqBEWZqkRZwgpyRY100kGeGwmlyatKlZLzMbo53B0e_OltTHrT9qEZLDVjXEqV85wN1O2BMqGNMVinu-C3EHaaEr2PTx_i04oMkwF_OOCbmODbHmEIyZva_of3ZaGp1LI8ymYNQduG_wJMJn5W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235567372</pqid></control><display><type>article</type><title>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>YAMAZAKI, Wataru ; SUGA, Yuki</creator><creatorcontrib>YAMAZAKI, Wataru ; SUGA, Yuki</creatorcontrib><description>In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space.</description><identifier>ISSN: 0549-3811</identifier><identifier>EISSN: 2189-4205</identifier><identifier>DOI: 10.2322/tjsass.60.10</identifier><language>eng</language><publisher>Tokyo: THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</publisher><subject>Biplanes ; Compressible flow ; Computer simulation ; Kriging interpolation ; Kriging Model ; Mach number ; Model accuracy ; Monte Carlo simulation ; Normal distribution ; Polynomial Chaos ; Polynomials ; Response surface methodology ; Supersonic aircraft ; Supersonic Biplane Airfoil ; Two dimensional flow ; Uncertainty ; Uncertainty Quantification ; Variation</subject><ispartof>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(1), pp.10-17</ispartof><rights>2017 The Japan Society for Aeronautical and Space Sciences</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</citedby><cites>FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>YAMAZAKI, Wataru</creatorcontrib><creatorcontrib>SUGA, Yuki</creatorcontrib><title>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</title><title>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</title><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><description>In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space.</description><subject>Biplanes</subject><subject>Compressible flow</subject><subject>Computer simulation</subject><subject>Kriging interpolation</subject><subject>Kriging Model</subject><subject>Mach number</subject><subject>Model accuracy</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Polynomial Chaos</subject><subject>Polynomials</subject><subject>Response surface methodology</subject><subject>Supersonic aircraft</subject><subject>Supersonic Biplane Airfoil</subject><subject>Two dimensional flow</subject><subject>Uncertainty</subject><subject>Uncertainty Quantification</subject><subject>Variation</subject><issn>0549-3811</issn><issn>2189-4205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqWw4wMssSXF7yTLUp5SJUC0KxbW1LGpqzQJtrPo35OqqGIzI809M3d0EbqmZMI4Y3dpEyHGiSITSk7QiNGizAQj8hSNiBRlxgtKz9FFjBtCOJd5MUJfs3bbQfCxbXDr8LIxNiTwTdrhjx6a5J03kPygTrsutGDWNmLfYMCffWfDsOYNvvddDY3FUx9c62v8HtpVbbeX6MxBHe3VXx-j5dPjYvaSzd-eX2fTeWZEIVMmraCFA1HxVc6EENYVlbKKEDCqBEWZqkRZwgpyRY100kGeGwmlyatKlZLzMbo53B0e_OltTHrT9qEZLDVjXEqV85wN1O2BMqGNMVinu-C3EHaaEr2PTx_i04oMkwF_OOCbmODbHmEIyZva_of3ZaGp1LI8ymYNQduG_wJMJn5W</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>YAMAZAKI, Wataru</creator><creator>SUGA, Yuki</creator><general>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2017</creationdate><title>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</title><author>YAMAZAKI, Wataru ; SUGA, Yuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biplanes</topic><topic>Compressible flow</topic><topic>Computer simulation</topic><topic>Kriging interpolation</topic><topic>Kriging Model</topic><topic>Mach number</topic><topic>Model accuracy</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Polynomial Chaos</topic><topic>Polynomials</topic><topic>Response surface methodology</topic><topic>Supersonic aircraft</topic><topic>Supersonic Biplane Airfoil</topic><topic>Two dimensional flow</topic><topic>Uncertainty</topic><topic>Uncertainty Quantification</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAMAZAKI, Wataru</creatorcontrib><creatorcontrib>SUGA, Yuki</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAMAZAKI, Wataru</au><au>SUGA, Yuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</atitle><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><date>2017</date><risdate>2017</risdate><volume>60</volume><issue>1</issue><spage>10</spage><epage>17</epage><pages>10-17</pages><issn>0549-3811</issn><eissn>2189-4205</eissn><abstract>In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space.</abstract><cop>Tokyo</cop><pub>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</pub><doi>10.2322/tjsass.60.10</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0549-3811 |
ispartof | TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(1), pp.10-17 |
issn | 0549-3811 2189-4205 |
language | eng |
recordid | cdi_proquest_journals_2235567372 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biplanes Compressible flow Computer simulation Kriging interpolation Kriging Model Mach number Model accuracy Monte Carlo simulation Normal distribution Polynomial Chaos Polynomials Response surface methodology Supersonic aircraft Supersonic Biplane Airfoil Two dimensional flow Uncertainty Uncertainty Quantification Variation |
title | Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Uncertainty%20Quantification%20Approaches%20in%20a%20Supersonic%20Biplane%20Airfoil%20Problem&rft.jtitle=TRANSACTIONS%20OF%20THE%20JAPAN%20SOCIETY%20FOR%20AERONAUTICAL%20AND%20SPACE%20SCIENCES&rft.au=YAMAZAKI,%20Wataru&rft.date=2017&rft.volume=60&rft.issue=1&rft.spage=10&rft.epage=17&rft.pages=10-17&rft.issn=0549-3811&rft.eissn=2189-4205&rft_id=info:doi/10.2322/tjsass.60.10&rft_dat=%3Cproquest_cross%3E2235567372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235567372&rft_id=info:pmid/&rfr_iscdi=true |