Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem

In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 2017, Vol.60(1), pp.10-17
Hauptverfasser: YAMAZAKI, Wataru, SUGA, Yuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 10
container_title TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
container_volume 60
creator YAMAZAKI, Wataru
SUGA, Yuki
description In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space.
doi_str_mv 10.2322/tjsass.60.10
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235567372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235567372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqWw4wMssSXF7yTLUp5SJUC0KxbW1LGpqzQJtrPo35OqqGIzI809M3d0EbqmZMI4Y3dpEyHGiSITSk7QiNGizAQj8hSNiBRlxgtKz9FFjBtCOJd5MUJfs3bbQfCxbXDr8LIxNiTwTdrhjx6a5J03kPygTrsutGDWNmLfYMCffWfDsOYNvvddDY3FUx9c62v8HtpVbbeX6MxBHe3VXx-j5dPjYvaSzd-eX2fTeWZEIVMmraCFA1HxVc6EENYVlbKKEDCqBEWZqkRZwgpyRY100kGeGwmlyatKlZLzMbo53B0e_OltTHrT9qEZLDVjXEqV85wN1O2BMqGNMVinu-C3EHaaEr2PTx_i04oMkwF_OOCbmODbHmEIyZva_of3ZaGp1LI8ymYNQduG_wJMJn5W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235567372</pqid></control><display><type>article</type><title>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>YAMAZAKI, Wataru ; SUGA, Yuki</creator><creatorcontrib>YAMAZAKI, Wataru ; SUGA, Yuki</creatorcontrib><description>In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space.</description><identifier>ISSN: 0549-3811</identifier><identifier>EISSN: 2189-4205</identifier><identifier>DOI: 10.2322/tjsass.60.10</identifier><language>eng</language><publisher>Tokyo: THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</publisher><subject>Biplanes ; Compressible flow ; Computer simulation ; Kriging interpolation ; Kriging Model ; Mach number ; Model accuracy ; Monte Carlo simulation ; Normal distribution ; Polynomial Chaos ; Polynomials ; Response surface methodology ; Supersonic aircraft ; Supersonic Biplane Airfoil ; Two dimensional flow ; Uncertainty ; Uncertainty Quantification ; Variation</subject><ispartof>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(1), pp.10-17</ispartof><rights>2017 The Japan Society for Aeronautical and Space Sciences</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</citedby><cites>FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>YAMAZAKI, Wataru</creatorcontrib><creatorcontrib>SUGA, Yuki</creatorcontrib><title>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</title><title>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</title><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><description>In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space.</description><subject>Biplanes</subject><subject>Compressible flow</subject><subject>Computer simulation</subject><subject>Kriging interpolation</subject><subject>Kriging Model</subject><subject>Mach number</subject><subject>Model accuracy</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Polynomial Chaos</subject><subject>Polynomials</subject><subject>Response surface methodology</subject><subject>Supersonic aircraft</subject><subject>Supersonic Biplane Airfoil</subject><subject>Two dimensional flow</subject><subject>Uncertainty</subject><subject>Uncertainty Quantification</subject><subject>Variation</subject><issn>0549-3811</issn><issn>2189-4205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqWw4wMssSXF7yTLUp5SJUC0KxbW1LGpqzQJtrPo35OqqGIzI809M3d0EbqmZMI4Y3dpEyHGiSITSk7QiNGizAQj8hSNiBRlxgtKz9FFjBtCOJd5MUJfs3bbQfCxbXDr8LIxNiTwTdrhjx6a5J03kPygTrsutGDWNmLfYMCffWfDsOYNvvddDY3FUx9c62v8HtpVbbeX6MxBHe3VXx-j5dPjYvaSzd-eX2fTeWZEIVMmraCFA1HxVc6EENYVlbKKEDCqBEWZqkRZwgpyRY100kGeGwmlyatKlZLzMbo53B0e_OltTHrT9qEZLDVjXEqV85wN1O2BMqGNMVinu-C3EHaaEr2PTx_i04oMkwF_OOCbmODbHmEIyZva_of3ZaGp1LI8ymYNQduG_wJMJn5W</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>YAMAZAKI, Wataru</creator><creator>SUGA, Yuki</creator><general>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2017</creationdate><title>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</title><author>YAMAZAKI, Wataru ; SUGA, Yuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-5e418fa4d3b72444ef8d6e600ac69a6126d499aba761c5f5fa77c5a9c7dd69533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biplanes</topic><topic>Compressible flow</topic><topic>Computer simulation</topic><topic>Kriging interpolation</topic><topic>Kriging Model</topic><topic>Mach number</topic><topic>Model accuracy</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Polynomial Chaos</topic><topic>Polynomials</topic><topic>Response surface methodology</topic><topic>Supersonic aircraft</topic><topic>Supersonic Biplane Airfoil</topic><topic>Two dimensional flow</topic><topic>Uncertainty</topic><topic>Uncertainty Quantification</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YAMAZAKI, Wataru</creatorcontrib><creatorcontrib>SUGA, Yuki</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YAMAZAKI, Wataru</au><au>SUGA, Yuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem</atitle><jtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</jtitle><addtitle>TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</addtitle><date>2017</date><risdate>2017</risdate><volume>60</volume><issue>1</issue><spage>10</spage><epage>17</epage><pages>10-17</pages><issn>0549-3811</issn><eissn>2189-4205</eissn><abstract>In this paper, uncertainty quantification approaches are compared quantitatively in an aerodynamic uncertainty quantification problem for a 2D supersonic biplane airfoil. Three advanced uncertainty quantification approaches are compared: an inexpensive Monte-Carlo simulation approach using a Kriging response surface model, an intrusive polynomial chaos approach, and a point collocation non-intrusive polynomial chaos approach. Two-dimensional inviscid compressible flow around the supersonic biplane airfoil is considered with an uncertainty of the freestream Mach number as a normal distribution. A choking phenomenon occurs in this problem setting, which gives discontinuous changes in aerodynamic performance with fluctuation of the freestream Mach number. The accuracies and characteristics of the three uncertainty quantification approaches are investigated. The inexpensive Monte-Carlo simulation approach shows the best performance with larger numbers of sample points in this study. The results of the non-intrusive polynomial chaos approach are sensitive to sampling strategies. Although the intrusive polynomial chaos approach is applied only with lower orders of polynomial chaos, it shows comparable accuracy with the other two approaches from the viewpoint of model accuracy when weighted at the center region of the uncertain input space.</abstract><cop>Tokyo</cop><pub>THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES</pub><doi>10.2322/tjsass.60.10</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0549-3811
ispartof TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2017, Vol.60(1), pp.10-17
issn 0549-3811
2189-4205
language eng
recordid cdi_proquest_journals_2235567372
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biplanes
Compressible flow
Computer simulation
Kriging interpolation
Kriging Model
Mach number
Model accuracy
Monte Carlo simulation
Normal distribution
Polynomial Chaos
Polynomials
Response surface methodology
Supersonic aircraft
Supersonic Biplane Airfoil
Two dimensional flow
Uncertainty
Uncertainty Quantification
Variation
title Comparison of Uncertainty Quantification Approaches in a Supersonic Biplane Airfoil Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Uncertainty%20Quantification%20Approaches%20in%20a%20Supersonic%20Biplane%20Airfoil%20Problem&rft.jtitle=TRANSACTIONS%20OF%20THE%20JAPAN%20SOCIETY%20FOR%20AERONAUTICAL%20AND%20SPACE%20SCIENCES&rft.au=YAMAZAKI,%20Wataru&rft.date=2017&rft.volume=60&rft.issue=1&rft.spage=10&rft.epage=17&rft.pages=10-17&rft.issn=0549-3811&rft.eissn=2189-4205&rft_id=info:doi/10.2322/tjsass.60.10&rft_dat=%3Cproquest_cross%3E2235567372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235567372&rft_id=info:pmid/&rfr_iscdi=true