Waves and Structures in the Boussinesq Equations

The classical Boussinesq equation describing gravity waves in shallow waters is under consideration. Hirota’s bilinear representation is used to construct exact solutions describing wave packets, waves on solitons, and “dancing” waves. The principle of multiplying the solutions of the Hirota equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2019-03, Vol.60 (2), p.377-381
Hauptverfasser: Kaptsov, O. V., Kaptsov, D. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 2
container_start_page 377
container_title Journal of applied mechanics and technical physics
container_volume 60
creator Kaptsov, O. V.
Kaptsov, D. O.
description The classical Boussinesq equation describing gravity waves in shallow waters is under consideration. Hirota’s bilinear representation is used to construct exact solutions describing wave packets, waves on solitons, and “dancing” waves. The principle of multiplying the solutions of the Hirota equation is formulated, which helps constructing more complex structures made of solitons, wave packets, and other types of waves.
doi_str_mv 10.1134/S0021894419020184
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235162738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2235162738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ce50ca2d8cc380f09a8a16cdfae70d7c173701b9bf99a1c3f1eece44c6e452993</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMoWFc_gLeC5-pMkjbJUZf1Dyx4WMVjyaYT7aLtNmkFv70tFTyIp-Hx3u8NPMbOES4RhbzaAHDURko0wAG1PGAJ5kpkuuBwyJLJzib_mJ3EuAMAo1ElDF7sJ8XUNlW66cPg-iGMsm7S_o3Sm3aIsW4odumqG2xft008ZUfevkc6-7kL9ny7elreZ-vHu4fl9TpzAos-c5SDs7zSzgkNHozVFgtXeUsKKuVQCQW4NVtvjEUnPBI5ktIVJHNujFiwi7l3H9puoNiXu3YIzfiy5FzkWHAl9JjCOeVCG2MgX-5D_WHDV4lQTsOUf4YZGT4zccw2rxR-m_-HvgFPUGQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235162738</pqid></control><display><type>article</type><title>Waves and Structures in the Boussinesq Equations</title><source>SpringerLink Journals (MCLS)</source><creator>Kaptsov, O. V. ; Kaptsov, D. O.</creator><creatorcontrib>Kaptsov, O. V. ; Kaptsov, D. O.</creatorcontrib><description>The classical Boussinesq equation describing gravity waves in shallow waters is under consideration. Hirota’s bilinear representation is used to construct exact solutions describing wave packets, waves on solitons, and “dancing” waves. The principle of multiplying the solutions of the Hirota equation is formulated, which helps constructing more complex structures made of solitons, wave packets, and other types of waves.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894419020184</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Boussinesq equations ; Classical and Continuum Physics ; Classical Mechanics ; Construction ; Fluid- and Aerodynamics ; Gravitational waves ; Gravity waves ; Lattice theory ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Physics ; Physics and Astronomy ; Solitary waves ; Wave packets</subject><ispartof>Journal of applied mechanics and technical physics, 2019-03, Vol.60 (2), p.377-381</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ce50ca2d8cc380f09a8a16cdfae70d7c173701b9bf99a1c3f1eece44c6e452993</citedby><cites>FETCH-LOGICAL-c316t-ce50ca2d8cc380f09a8a16cdfae70d7c173701b9bf99a1c3f1eece44c6e452993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894419020184$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894419020184$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kaptsov, O. V.</creatorcontrib><creatorcontrib>Kaptsov, D. O.</creatorcontrib><title>Waves and Structures in the Boussinesq Equations</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>The classical Boussinesq equation describing gravity waves in shallow waters is under consideration. Hirota’s bilinear representation is used to construct exact solutions describing wave packets, waves on solitons, and “dancing” waves. The principle of multiplying the solutions of the Hirota equation is formulated, which helps constructing more complex structures made of solitons, wave packets, and other types of waves.</description><subject>Applications of Mathematics</subject><subject>Boussinesq equations</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Construction</subject><subject>Fluid- and Aerodynamics</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Lattice theory</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solitary waves</subject><subject>Wave packets</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMoWFc_gLeC5-pMkjbJUZf1Dyx4WMVjyaYT7aLtNmkFv70tFTyIp-Hx3u8NPMbOES4RhbzaAHDURko0wAG1PGAJ5kpkuuBwyJLJzib_mJ3EuAMAo1ElDF7sJ8XUNlW66cPg-iGMsm7S_o3Sm3aIsW4odumqG2xft008ZUfevkc6-7kL9ny7elreZ-vHu4fl9TpzAos-c5SDs7zSzgkNHozVFgtXeUsKKuVQCQW4NVtvjEUnPBI5ktIVJHNujFiwi7l3H9puoNiXu3YIzfiy5FzkWHAl9JjCOeVCG2MgX-5D_WHDV4lQTsOUf4YZGT4zccw2rxR-m_-HvgFPUGQM</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Kaptsov, O. V.</creator><creator>Kaptsov, D. O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Waves and Structures in the Boussinesq Equations</title><author>Kaptsov, O. V. ; Kaptsov, D. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ce50ca2d8cc380f09a8a16cdfae70d7c173701b9bf99a1c3f1eece44c6e452993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Boussinesq equations</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Construction</topic><topic>Fluid- and Aerodynamics</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Lattice theory</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solitary waves</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaptsov, O. V.</creatorcontrib><creatorcontrib>Kaptsov, D. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaptsov, O. V.</au><au>Kaptsov, D. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waves and Structures in the Boussinesq Equations</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>60</volume><issue>2</issue><spage>377</spage><epage>381</epage><pages>377-381</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>The classical Boussinesq equation describing gravity waves in shallow waters is under consideration. Hirota’s bilinear representation is used to construct exact solutions describing wave packets, waves on solitons, and “dancing” waves. The principle of multiplying the solutions of the Hirota equation is formulated, which helps constructing more complex structures made of solitons, wave packets, and other types of waves.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894419020184</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2019-03, Vol.60 (2), p.377-381
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_journals_2235162738
source SpringerLink Journals (MCLS)
subjects Applications of Mathematics
Boussinesq equations
Classical and Continuum Physics
Classical Mechanics
Construction
Fluid- and Aerodynamics
Gravitational waves
Gravity waves
Lattice theory
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Physics
Physics and Astronomy
Solitary waves
Wave packets
title Waves and Structures in the Boussinesq Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waves%20and%20Structures%20in%20the%20Boussinesq%20Equations&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Kaptsov,%20O.%20V.&rft.date=2019-03-01&rft.volume=60&rft.issue=2&rft.spage=377&rft.epage=381&rft.pages=377-381&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894419020184&rft_dat=%3Cproquest_cross%3E2235162738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235162738&rft_id=info:pmid/&rfr_iscdi=true