A new dynamic security assessment framework based on semi-supervised learning and data editing

•Penetration of renewables increases diversity of power system operation conditions.•Semi-supervised training reduces labeled training data for DSA updating.•Data editing helps to improve performance of a tri-training trained classifier.•Tri-training can help to speed up online DSA classifier updati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2019-07, Vol.172, p.221-229
Hauptverfasser: Liu, Ruidong, Verbič, Gregor, Ma, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue
container_start_page 221
container_title Electric power systems research
container_volume 172
creator Liu, Ruidong
Verbič, Gregor
Ma, Jin
description •Penetration of renewables increases diversity of power system operation conditions.•Semi-supervised training reduces labeled training data for DSA updating.•Data editing helps to improve performance of a tri-training trained classifier.•Tri-training can help to speed up online DSA classifier updating. In this paper, we propose a new online dynamic security assessment (DSA) framework based on semi-supervised learning and data editing. To reduce the number of labeled samples used by supervised learning in conventional DSA, which is required to ensure a high generalization performance of a classifier, we augment the training set with a large number of unlabeled samples that are easily computed. As an alternative to computationally expensive time-domain simulations, the unlabeled samples are labeled by an algorithm called tri-training. To reduce the noise that comes with incorrectly labeled samples, we use data editing, which significantly improves the classification performance. We demonstrate the performance of the proposed framework in a case study using the IEEE 39-bus New England test system with different levels of wind penetration. The results show that the proposed DSA framework reduces the number of labeled samples required to train the neural network used as an online transient stability classifier, which significantly reduces the computational burden associated with the training of the classifier.
doi_str_mv 10.1016/j.epsr.2019.03.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235020514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779619301014</els_id><sourcerecordid>2235020514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4631d976904314ac2b8732660bebf962adfc688f2bd540377af01616151fba853</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpml_oCdBz3ZXki3b0EsIfUGgl_ZaIUvrojSWU8lOyN9XIT2XPSwMM7szQ8gtg5wBk_frHLcx5BxYk4PIAZozMmN1JTIOhTwnMxBVnVVVIy_JVYxrAJBNVc7I54J63FN78Lp3hkY0U3DjgeoYMcYe_Ui7oHvcD-GbtjqipYNPtN5lcdpi2LkjtEEdvPNfVHtLrR41RevGBFyTi05vIt787Tn5eHp8X75kq7fn1-VilRnB6zErpGC2qWQDhWCFNrxN1rmU0GLbNZJr2xlZ1x1vbVmkKJXuUuo0JetaXZdiTu5Od7dh-Jkwjmo9TMGnl4pzUQKHkhWJxU8sE4YYA3ZqG1yvw0ExUMce1Vode1THHhUIlXpMooeTCJP_ncOgonHoTUoY0IzKDu4_-S-gSnwx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235020514</pqid></control><display><type>article</type><title>A new dynamic security assessment framework based on semi-supervised learning and data editing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Ruidong ; Verbič, Gregor ; Ma, Jin</creator><creatorcontrib>Liu, Ruidong ; Verbič, Gregor ; Ma, Jin</creatorcontrib><description>•Penetration of renewables increases diversity of power system operation conditions.•Semi-supervised training reduces labeled training data for DSA updating.•Data editing helps to improve performance of a tri-training trained classifier.•Tri-training can help to speed up online DSA classifier updating. In this paper, we propose a new online dynamic security assessment (DSA) framework based on semi-supervised learning and data editing. To reduce the number of labeled samples used by supervised learning in conventional DSA, which is required to ensure a high generalization performance of a classifier, we augment the training set with a large number of unlabeled samples that are easily computed. As an alternative to computationally expensive time-domain simulations, the unlabeled samples are labeled by an algorithm called tri-training. To reduce the noise that comes with incorrectly labeled samples, we use data editing, which significantly improves the classification performance. We demonstrate the performance of the proposed framework in a case study using the IEEE 39-bus New England test system with different levels of wind penetration. The results show that the proposed DSA framework reduces the number of labeled samples required to train the neural network used as an online transient stability classifier, which significantly reduces the computational burden associated with the training of the classifier.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2019.03.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classifiers ; Computer simulation ; Data editing ; Data transmission ; Dynamic security assessment ; Editing ; Electric power lines ; Machine learning ; Neural networks ; Noise reduction ; Risk assessment ; Security ; Security systems ; Semi-supervised learning ; Systems stability ; Training ; Transient stability</subject><ispartof>Electric power systems research, 2019-07, Vol.172, p.221-229</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4631d976904314ac2b8732660bebf962adfc688f2bd540377af01616151fba853</citedby><cites>FETCH-LOGICAL-c328t-4631d976904314ac2b8732660bebf962adfc688f2bd540377af01616151fba853</cites><orcidid>0000-0003-4949-768X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2019.03.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Ruidong</creatorcontrib><creatorcontrib>Verbič, Gregor</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><title>A new dynamic security assessment framework based on semi-supervised learning and data editing</title><title>Electric power systems research</title><description>•Penetration of renewables increases diversity of power system operation conditions.•Semi-supervised training reduces labeled training data for DSA updating.•Data editing helps to improve performance of a tri-training trained classifier.•Tri-training can help to speed up online DSA classifier updating. In this paper, we propose a new online dynamic security assessment (DSA) framework based on semi-supervised learning and data editing. To reduce the number of labeled samples used by supervised learning in conventional DSA, which is required to ensure a high generalization performance of a classifier, we augment the training set with a large number of unlabeled samples that are easily computed. As an alternative to computationally expensive time-domain simulations, the unlabeled samples are labeled by an algorithm called tri-training. To reduce the noise that comes with incorrectly labeled samples, we use data editing, which significantly improves the classification performance. We demonstrate the performance of the proposed framework in a case study using the IEEE 39-bus New England test system with different levels of wind penetration. The results show that the proposed DSA framework reduces the number of labeled samples required to train the neural network used as an online transient stability classifier, which significantly reduces the computational burden associated with the training of the classifier.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Computer simulation</subject><subject>Data editing</subject><subject>Data transmission</subject><subject>Dynamic security assessment</subject><subject>Editing</subject><subject>Electric power lines</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Risk assessment</subject><subject>Security</subject><subject>Security systems</subject><subject>Semi-supervised learning</subject><subject>Systems stability</subject><subject>Training</subject><subject>Transient stability</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqwzAQFKWFpml_oCdBz3ZXki3b0EsIfUGgl_ZaIUvrojSWU8lOyN9XIT2XPSwMM7szQ8gtg5wBk_frHLcx5BxYk4PIAZozMmN1JTIOhTwnMxBVnVVVIy_JVYxrAJBNVc7I54J63FN78Lp3hkY0U3DjgeoYMcYe_Ui7oHvcD-GbtjqipYNPtN5lcdpi2LkjtEEdvPNfVHtLrR41RevGBFyTi05vIt787Tn5eHp8X75kq7fn1-VilRnB6zErpGC2qWQDhWCFNrxN1rmU0GLbNZJr2xlZ1x1vbVmkKJXuUuo0JetaXZdiTu5Od7dh-Jkwjmo9TMGnl4pzUQKHkhWJxU8sE4YYA3ZqG1yvw0ExUMce1Vode1THHhUIlXpMooeTCJP_ncOgonHoTUoY0IzKDu4_-S-gSnwx</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Liu, Ruidong</creator><creator>Verbič, Gregor</creator><creator>Ma, Jin</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4949-768X</orcidid></search><sort><creationdate>201907</creationdate><title>A new dynamic security assessment framework based on semi-supervised learning and data editing</title><author>Liu, Ruidong ; Verbič, Gregor ; Ma, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4631d976904314ac2b8732660bebf962adfc688f2bd540377af01616151fba853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Computer simulation</topic><topic>Data editing</topic><topic>Data transmission</topic><topic>Dynamic security assessment</topic><topic>Editing</topic><topic>Electric power lines</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Risk assessment</topic><topic>Security</topic><topic>Security systems</topic><topic>Semi-supervised learning</topic><topic>Systems stability</topic><topic>Training</topic><topic>Transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ruidong</creatorcontrib><creatorcontrib>Verbič, Gregor</creatorcontrib><creatorcontrib>Ma, Jin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ruidong</au><au>Verbič, Gregor</au><au>Ma, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new dynamic security assessment framework based on semi-supervised learning and data editing</atitle><jtitle>Electric power systems research</jtitle><date>2019-07</date><risdate>2019</risdate><volume>172</volume><spage>221</spage><epage>229</epage><pages>221-229</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•Penetration of renewables increases diversity of power system operation conditions.•Semi-supervised training reduces labeled training data for DSA updating.•Data editing helps to improve performance of a tri-training trained classifier.•Tri-training can help to speed up online DSA classifier updating. In this paper, we propose a new online dynamic security assessment (DSA) framework based on semi-supervised learning and data editing. To reduce the number of labeled samples used by supervised learning in conventional DSA, which is required to ensure a high generalization performance of a classifier, we augment the training set with a large number of unlabeled samples that are easily computed. As an alternative to computationally expensive time-domain simulations, the unlabeled samples are labeled by an algorithm called tri-training. To reduce the noise that comes with incorrectly labeled samples, we use data editing, which significantly improves the classification performance. We demonstrate the performance of the proposed framework in a case study using the IEEE 39-bus New England test system with different levels of wind penetration. The results show that the proposed DSA framework reduces the number of labeled samples required to train the neural network used as an online transient stability classifier, which significantly reduces the computational burden associated with the training of the classifier.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2019.03.009</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4949-768X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2019-07, Vol.172, p.221-229
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2235020514
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Classifiers
Computer simulation
Data editing
Data transmission
Dynamic security assessment
Editing
Electric power lines
Machine learning
Neural networks
Noise reduction
Risk assessment
Security
Security systems
Semi-supervised learning
Systems stability
Training
Transient stability
title A new dynamic security assessment framework based on semi-supervised learning and data editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20dynamic%20security%20assessment%20framework%20based%20on%20semi-supervised%20learning%20and%20data%20editing&rft.jtitle=Electric%20power%20systems%20research&rft.au=Liu,%20Ruidong&rft.date=2019-07&rft.volume=172&rft.spage=221&rft.epage=229&rft.pages=221-229&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2019.03.009&rft_dat=%3Cproquest_cross%3E2235020514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235020514&rft_id=info:pmid/&rft_els_id=S0378779619301014&rfr_iscdi=true