Ranking critical assets in interdependent energy transmission networks

•A methodology to identify critical assets in a coupled gas-power grid is proposed.•The feasibility of the geodesic vulnerability index is demonstrated.•Critical nodes are classified by evaluating the performance of 557 networks.•A damage area measure is proposed for the comparison of cascading fail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2019-07, Vol.172, p.242-252
Hauptverfasser: Beyza, Jesus, Garcia-Paricio, Eduardo, Yusta, Jose M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue
container_start_page 242
container_title Electric power systems research
container_volume 172
creator Beyza, Jesus
Garcia-Paricio, Eduardo
Yusta, Jose M.
description •A methodology to identify critical assets in a coupled gas-power grid is proposed.•The feasibility of the geodesic vulnerability index is demonstrated.•Critical nodes are classified by evaluating the performance of 557 networks.•A damage area measure is proposed for the comparison of cascading failures curves. This article proposes a procedure based on graph theory to identify critical assets in integrated natural gas and electricity infrastructures. In order to validate the results achieved with the graph-based approach, the technique of coupled electricity and gas flows is also used. The criticality level of each node is calculated using the geodesic vulnerability topological index and the classification is determined via a dimensionless measure called damage area. This measure quantifies the performance under cascading failures following the removal of each asset. The methodology is applied to an infrastructure system composed of an IEEE network of 118 buses and a natural gas system of 25 nodes and three compressors, resulting in 557 different case studies. As a conclusion, it is demonstrated that graph theory can be useful and accurate in evaluating and identifying the most critical assets of interdependent electricity and natural gas infrastructures.
doi_str_mv 10.1016/j.epsr.2019.03.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2235020328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779619301063</els_id><sourcerecordid>2235020328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-79620cad2094deddfad0eb0d28ebd194706ac685e204066f582de51cd05750513</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeC59aXpElb8CLDqTAQRM8hS15Hui2dSabsvzdjnoUH7_L9xYeQWwoVBSrvhwp3MVQMaFcBr4DWZ2RC24aXDGp5TibAm7Zsmk5ekqsYBwCQXSMmZP6u_dr5VWGCS87oTaFjxBQL5_MlDBZ36C36VKDHsDoUKWgfty5GN_rCY_oZwzpek4tebyLe_P0p-Zw_fcxeysXb8-vscVEa3tJU5n4GRlsGXW3R2l5bwCVY1uLS0q5uQGojW4F5NUjZi5ZZFNRYEI0AQfmU3J1yd2H82mNMahj3wedKxRgXwICzNqvYSWXCGGPAXu2C2-pwUBTUkZca1JGXOvJSwFXmlU0PJxPm_d8Og4rGoTdoXUCTlB3df_Zf4vl0rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235020328</pqid></control><display><type>article</type><title>Ranking critical assets in interdependent energy transmission networks</title><source>Elsevier ScienceDirect Journals</source><creator>Beyza, Jesus ; Garcia-Paricio, Eduardo ; Yusta, Jose M.</creator><creatorcontrib>Beyza, Jesus ; Garcia-Paricio, Eduardo ; Yusta, Jose M.</creatorcontrib><description>•A methodology to identify critical assets in a coupled gas-power grid is proposed.•The feasibility of the geodesic vulnerability index is demonstrated.•Critical nodes are classified by evaluating the performance of 557 networks.•A damage area measure is proposed for the comparison of cascading failures curves. This article proposes a procedure based on graph theory to identify critical assets in integrated natural gas and electricity infrastructures. In order to validate the results achieved with the graph-based approach, the technique of coupled electricity and gas flows is also used. The criticality level of each node is calculated using the geodesic vulnerability topological index and the classification is determined via a dimensionless measure called damage area. This measure quantifies the performance under cascading failures following the removal of each asset. The methodology is applied to an infrastructure system composed of an IEEE network of 118 buses and a natural gas system of 25 nodes and three compressors, resulting in 557 different case studies. As a conclusion, it is demonstrated that graph theory can be useful and accurate in evaluating and identifying the most critical assets of interdependent electricity and natural gas infrastructures.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2019.03.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cascading failures ; Compressors ; Critical assets ; Data buses ; Electricity ; Electricity distribution ; Energy transmission ; Gas flow ; Gas networks ; Graph theory ; Interdependence ; Interdependent infrastructures ; Natural gas ; Natural gas distribution ; Power flow</subject><ispartof>Electric power systems research, 2019-07, Vol.172, p.242-252</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-79620cad2094deddfad0eb0d28ebd194706ac685e204066f582de51cd05750513</citedby><cites>FETCH-LOGICAL-c381t-79620cad2094deddfad0eb0d28ebd194706ac685e204066f582de51cd05750513</cites><orcidid>0000-0003-3992-4393 ; 0000-0003-3174-9703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378779619301063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Beyza, Jesus</creatorcontrib><creatorcontrib>Garcia-Paricio, Eduardo</creatorcontrib><creatorcontrib>Yusta, Jose M.</creatorcontrib><title>Ranking critical assets in interdependent energy transmission networks</title><title>Electric power systems research</title><description>•A methodology to identify critical assets in a coupled gas-power grid is proposed.•The feasibility of the geodesic vulnerability index is demonstrated.•Critical nodes are classified by evaluating the performance of 557 networks.•A damage area measure is proposed for the comparison of cascading failures curves. This article proposes a procedure based on graph theory to identify critical assets in integrated natural gas and electricity infrastructures. In order to validate the results achieved with the graph-based approach, the technique of coupled electricity and gas flows is also used. The criticality level of each node is calculated using the geodesic vulnerability topological index and the classification is determined via a dimensionless measure called damage area. This measure quantifies the performance under cascading failures following the removal of each asset. The methodology is applied to an infrastructure system composed of an IEEE network of 118 buses and a natural gas system of 25 nodes and three compressors, resulting in 557 different case studies. As a conclusion, it is demonstrated that graph theory can be useful and accurate in evaluating and identifying the most critical assets of interdependent electricity and natural gas infrastructures.</description><subject>Cascading failures</subject><subject>Compressors</subject><subject>Critical assets</subject><subject>Data buses</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy transmission</subject><subject>Gas flow</subject><subject>Gas networks</subject><subject>Graph theory</subject><subject>Interdependence</subject><subject>Interdependent infrastructures</subject><subject>Natural gas</subject><subject>Natural gas distribution</subject><subject>Power flow</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKf_gKeC59aXpElb8CLDqTAQRM8hS15Hui2dSabsvzdjnoUH7_L9xYeQWwoVBSrvhwp3MVQMaFcBr4DWZ2RC24aXDGp5TibAm7Zsmk5ekqsYBwCQXSMmZP6u_dr5VWGCS87oTaFjxBQL5_MlDBZ36C36VKDHsDoUKWgfty5GN_rCY_oZwzpek4tebyLe_P0p-Zw_fcxeysXb8-vscVEa3tJU5n4GRlsGXW3R2l5bwCVY1uLS0q5uQGojW4F5NUjZi5ZZFNRYEI0AQfmU3J1yd2H82mNMahj3wedKxRgXwICzNqvYSWXCGGPAXu2C2-pwUBTUkZca1JGXOvJSwFXmlU0PJxPm_d8Og4rGoTdoXUCTlB3df_Zf4vl0rQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Beyza, Jesus</creator><creator>Garcia-Paricio, Eduardo</creator><creator>Yusta, Jose M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3992-4393</orcidid><orcidid>https://orcid.org/0000-0003-3174-9703</orcidid></search><sort><creationdate>20190701</creationdate><title>Ranking critical assets in interdependent energy transmission networks</title><author>Beyza, Jesus ; Garcia-Paricio, Eduardo ; Yusta, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-79620cad2094deddfad0eb0d28ebd194706ac685e204066f582de51cd05750513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cascading failures</topic><topic>Compressors</topic><topic>Critical assets</topic><topic>Data buses</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy transmission</topic><topic>Gas flow</topic><topic>Gas networks</topic><topic>Graph theory</topic><topic>Interdependence</topic><topic>Interdependent infrastructures</topic><topic>Natural gas</topic><topic>Natural gas distribution</topic><topic>Power flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyza, Jesus</creatorcontrib><creatorcontrib>Garcia-Paricio, Eduardo</creatorcontrib><creatorcontrib>Yusta, Jose M.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyza, Jesus</au><au>Garcia-Paricio, Eduardo</au><au>Yusta, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranking critical assets in interdependent energy transmission networks</atitle><jtitle>Electric power systems research</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>172</volume><spage>242</spage><epage>252</epage><pages>242-252</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•A methodology to identify critical assets in a coupled gas-power grid is proposed.•The feasibility of the geodesic vulnerability index is demonstrated.•Critical nodes are classified by evaluating the performance of 557 networks.•A damage area measure is proposed for the comparison of cascading failures curves. This article proposes a procedure based on graph theory to identify critical assets in integrated natural gas and electricity infrastructures. In order to validate the results achieved with the graph-based approach, the technique of coupled electricity and gas flows is also used. The criticality level of each node is calculated using the geodesic vulnerability topological index and the classification is determined via a dimensionless measure called damage area. This measure quantifies the performance under cascading failures following the removal of each asset. The methodology is applied to an infrastructure system composed of an IEEE network of 118 buses and a natural gas system of 25 nodes and three compressors, resulting in 557 different case studies. As a conclusion, it is demonstrated that graph theory can be useful and accurate in evaluating and identifying the most critical assets of interdependent electricity and natural gas infrastructures.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2019.03.014</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3992-4393</orcidid><orcidid>https://orcid.org/0000-0003-3174-9703</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2019-07, Vol.172, p.242-252
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2235020328
source Elsevier ScienceDirect Journals
subjects Cascading failures
Compressors
Critical assets
Data buses
Electricity
Electricity distribution
Energy transmission
Gas flow
Gas networks
Graph theory
Interdependence
Interdependent infrastructures
Natural gas
Natural gas distribution
Power flow
title Ranking critical assets in interdependent energy transmission networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranking%20critical%20assets%20in%20interdependent%20energy%20transmission%20networks&rft.jtitle=Electric%20power%20systems%20research&rft.au=Beyza,%20Jesus&rft.date=2019-07-01&rft.volume=172&rft.spage=242&rft.epage=252&rft.pages=242-252&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2019.03.014&rft_dat=%3Cproquest_cross%3E2235020328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235020328&rft_id=info:pmid/&rft_els_id=S0378779619301063&rfr_iscdi=true