Biomedical Named Entity Recognition via Reference-Set Augmented Bootstrapping

We present a weakly-supervised data augmentation approach to improve Named Entity Recognition (NER) in a challenging domain: extracting biomedical entities (e.g., proteins) from the scientific literature. First, we train a neural NER (NNER) model over a small seed of fully-labeled examples. Second,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-06
Hauptverfasser: Mathew, Joel, Fakhraei, Shobeir, Ambite, José Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mathew, Joel
Fakhraei, Shobeir
Ambite, José Luis
description We present a weakly-supervised data augmentation approach to improve Named Entity Recognition (NER) in a challenging domain: extracting biomedical entities (e.g., proteins) from the scientific literature. First, we train a neural NER (NNER) model over a small seed of fully-labeled examples. Second, we use a reference set of entity names (e.g., proteins in UniProt) to identify entity mentions with high precision, but low recall, on an unlabeled corpus. Third, we use the NNER model to assign weak labels to the corpus. Finally, we retrain our NNER model iteratively over the augmented training set, including the seed, the reference-set examples, and the weakly-labeled examples, which improves model performance. We show empirically that this augmented bootstrapping process significantly improves NER performance, and discuss the factors impacting the efficacy of the approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2234819470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234819470</sourcerecordid><originalsourceid>FETCH-proquest_journals_22348194703</originalsourceid><addsrcrecordid>eNqNikELgjAYhkcQJOV_GHQW5jbTjhlGlzpUdxn2KRPdbPsM-vft0A_o9LwP77MgERciTQrJ-YrE3veMMb7LeZaJiFxKbUd46kYN9KrCopVBjR96g8Z2RqO2hr61Ct6CA9NAcgekh7kbwWDIS2vRo1PTpE23IctWDR7iH9dke6oex3MyOfuawWPd29mZcNWcC1mke5kz8V_1BZVXPfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234819470</pqid></control><display><type>article</type><title>Biomedical Named Entity Recognition via Reference-Set Augmented Bootstrapping</title><source>Free E- Journals</source><creator>Mathew, Joel ; Fakhraei, Shobeir ; Ambite, José Luis</creator><creatorcontrib>Mathew, Joel ; Fakhraei, Shobeir ; Ambite, José Luis</creatorcontrib><description>We present a weakly-supervised data augmentation approach to improve Named Entity Recognition (NER) in a challenging domain: extracting biomedical entities (e.g., proteins) from the scientific literature. First, we train a neural NER (NNER) model over a small seed of fully-labeled examples. Second, we use a reference set of entity names (e.g., proteins in UniProt) to identify entity mentions with high precision, but low recall, on an unlabeled corpus. Third, we use the NNER model to assign weak labels to the corpus. Finally, we retrain our NNER model iteratively over the augmented training set, including the seed, the reference-set examples, and the weakly-labeled examples, which improves model performance. We show empirically that this augmented bootstrapping process significantly improves NER performance, and discuss the factors impacting the efficacy of the approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Proteins ; Recognition</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mathew, Joel</creatorcontrib><creatorcontrib>Fakhraei, Shobeir</creatorcontrib><creatorcontrib>Ambite, José Luis</creatorcontrib><title>Biomedical Named Entity Recognition via Reference-Set Augmented Bootstrapping</title><title>arXiv.org</title><description>We present a weakly-supervised data augmentation approach to improve Named Entity Recognition (NER) in a challenging domain: extracting biomedical entities (e.g., proteins) from the scientific literature. First, we train a neural NER (NNER) model over a small seed of fully-labeled examples. Second, we use a reference set of entity names (e.g., proteins in UniProt) to identify entity mentions with high precision, but low recall, on an unlabeled corpus. Third, we use the NNER model to assign weak labels to the corpus. Finally, we retrain our NNER model iteratively over the augmented training set, including the seed, the reference-set examples, and the weakly-labeled examples, which improves model performance. We show empirically that this augmented bootstrapping process significantly improves NER performance, and discuss the factors impacting the efficacy of the approach.</description><subject>Proteins</subject><subject>Recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELgjAYhkcQJOV_GHQW5jbTjhlGlzpUdxn2KRPdbPsM-vft0A_o9LwP77MgERciTQrJ-YrE3veMMb7LeZaJiFxKbUd46kYN9KrCopVBjR96g8Z2RqO2hr61Ct6CA9NAcgekh7kbwWDIS2vRo1PTpE23IctWDR7iH9dke6oex3MyOfuawWPd29mZcNWcC1mke5kz8V_1BZVXPfw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Mathew, Joel</creator><creator>Fakhraei, Shobeir</creator><creator>Ambite, José Luis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190601</creationdate><title>Biomedical Named Entity Recognition via Reference-Set Augmented Bootstrapping</title><author>Mathew, Joel ; Fakhraei, Shobeir ; Ambite, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22348194703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Proteins</topic><topic>Recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Mathew, Joel</creatorcontrib><creatorcontrib>Fakhraei, Shobeir</creatorcontrib><creatorcontrib>Ambite, José Luis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathew, Joel</au><au>Fakhraei, Shobeir</au><au>Ambite, José Luis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Biomedical Named Entity Recognition via Reference-Set Augmented Bootstrapping</atitle><jtitle>arXiv.org</jtitle><date>2019-06-01</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We present a weakly-supervised data augmentation approach to improve Named Entity Recognition (NER) in a challenging domain: extracting biomedical entities (e.g., proteins) from the scientific literature. First, we train a neural NER (NNER) model over a small seed of fully-labeled examples. Second, we use a reference set of entity names (e.g., proteins in UniProt) to identify entity mentions with high precision, but low recall, on an unlabeled corpus. Third, we use the NNER model to assign weak labels to the corpus. Finally, we retrain our NNER model iteratively over the augmented training set, including the seed, the reference-set examples, and the weakly-labeled examples, which improves model performance. We show empirically that this augmented bootstrapping process significantly improves NER performance, and discuss the factors impacting the efficacy of the approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2234819470
source Free E- Journals
subjects Proteins
Recognition
title Biomedical Named Entity Recognition via Reference-Set Augmented Bootstrapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Biomedical%20Named%20Entity%20Recognition%20via%20Reference-Set%20Augmented%20Bootstrapping&rft.jtitle=arXiv.org&rft.au=Mathew,%20Joel&rft.date=2019-06-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2234819470%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234819470&rft_id=info:pmid/&rfr_iscdi=true