On Periodic Regimes Triggered by Herd Behaviour in Population Systems
Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population...
Gespeichert in:
Veröffentlicht in: | International journal of applied and computational mathematics 2019-06, Vol.5 (3), p.1-23, Article 99 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | International journal of applied and computational mathematics |
container_volume | 5 |
creator | de Assis, Luciana Mafalda Elias Massad, Eduardo de Assis, Raul Abreu Pazim, Rubens Venturino, Ezio |
description | Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions. |
doi_str_mv | 10.1007/s40819-019-0689-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234548860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234548860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgqf0B3gKeV18-9-WopVqhUNF6Duk2W1Pa3Zpshf77pqzgycPw5jDz3rwh5JbBPQMoH5IEZKaAMzSawlyQAWfGFKo0-jJzITNnIK7JKKUNAHAmS-A4IJN5Q998DO0qVPTdr8POJ7qIYb320a_o8kinPq7ok_9yP6E9RBqyvt0ftq4LbUM_jqnzu3RDrmq3TX70O4fk83myGE-L2fzldfw4KyoucjiUIJ2u0TDQQjLUpQclwDGlEaE2tVKVkxKlcQ6lQr5kzAjFpeLe8CWKIbnr9-5j-33wqbObnKnJJy3PTyqJqCGrWK-qYptS9LXdx7Bz8WgZ2HNhti_Mwhm5MGuyh_eelLVNfv5v8_-mExPBal4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234548860</pqid></control><display><type>article</type><title>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Assis, Luciana Mafalda Elias ; Massad, Eduardo ; de Assis, Raul Abreu ; Pazim, Rubens ; Venturino, Ezio</creator><creatorcontrib>de Assis, Luciana Mafalda Elias ; Massad, Eduardo ; de Assis, Raul Abreu ; Pazim, Rubens ; Venturino, Ezio</creatorcontrib><description>Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-019-0689-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Bifurcations ; Computational mathematics ; Computational Science and Engineering ; Economic models ; Hopf bifurcation ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Response functions ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2019-06, Vol.5 (3), p.1-23, Article 99</ispartof><rights>Springer Nature India Private Limited 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</citedby><cites>FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-019-0689-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-019-0689-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>de Assis, Luciana Mafalda Elias</creatorcontrib><creatorcontrib>Massad, Eduardo</creatorcontrib><creatorcontrib>de Assis, Raul Abreu</creatorcontrib><creatorcontrib>Pazim, Rubens</creatorcontrib><creatorcontrib>Venturino, Ezio</creatorcontrib><title>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Bifurcations</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Economic models</subject><subject>Hopf bifurcation</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Response functions</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgqf0B3gKeV18-9-WopVqhUNF6Duk2W1Pa3Zpshf77pqzgycPw5jDz3rwh5JbBPQMoH5IEZKaAMzSawlyQAWfGFKo0-jJzITNnIK7JKKUNAHAmS-A4IJN5Q998DO0qVPTdr8POJ7qIYb320a_o8kinPq7ok_9yP6E9RBqyvt0ftq4LbUM_jqnzu3RDrmq3TX70O4fk83myGE-L2fzldfw4KyoucjiUIJ2u0TDQQjLUpQclwDGlEaE2tVKVkxKlcQ6lQr5kzAjFpeLe8CWKIbnr9-5j-33wqbObnKnJJy3PTyqJqCGrWK-qYptS9LXdx7Bz8WgZ2HNhti_Mwhm5MGuyh_eelLVNfv5v8_-mExPBal4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>de Assis, Luciana Mafalda Elias</creator><creator>Massad, Eduardo</creator><creator>de Assis, Raul Abreu</creator><creator>Pazim, Rubens</creator><creator>Venturino, Ezio</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</title><author>de Assis, Luciana Mafalda Elias ; Massad, Eduardo ; de Assis, Raul Abreu ; Pazim, Rubens ; Venturino, Ezio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Bifurcations</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Economic models</topic><topic>Hopf bifurcation</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Response functions</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Assis, Luciana Mafalda Elias</creatorcontrib><creatorcontrib>Massad, Eduardo</creatorcontrib><creatorcontrib>de Assis, Raul Abreu</creatorcontrib><creatorcontrib>Pazim, Rubens</creatorcontrib><creatorcontrib>Venturino, Ezio</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Assis, Luciana Mafalda Elias</au><au>Massad, Eduardo</au><au>de Assis, Raul Abreu</au><au>Pazim, Rubens</au><au>Venturino, Ezio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>5</volume><issue>3</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>99</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-019-0689-9</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2349-5103 |
ispartof | International journal of applied and computational mathematics, 2019-06, Vol.5 (3), p.1-23, Article 99 |
issn | 2349-5103 2199-5796 |
language | eng |
recordid | cdi_proquest_journals_2234548860 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Applied mathematics Bifurcations Computational mathematics Computational Science and Engineering Economic models Hopf bifurcation Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Response functions Theoretical |
title | On Periodic Regimes Triggered by Herd Behaviour in Population Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Periodic%20Regimes%20Triggered%20by%20Herd%20Behaviour%20in%20Population%20Systems&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=de%20Assis,%20Luciana%20Mafalda%20Elias&rft.date=2019-06-01&rft.volume=5&rft.issue=3&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=99&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-019-0689-9&rft_dat=%3Cproquest_cross%3E2234548860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234548860&rft_id=info:pmid/&rfr_iscdi=true |