On Periodic Regimes Triggered by Herd Behaviour in Population Systems

Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied and computational mathematics 2019-06, Vol.5 (3), p.1-23, Article 99
Hauptverfasser: de Assis, Luciana Mafalda Elias, Massad, Eduardo, de Assis, Raul Abreu, Pazim, Rubens, Venturino, Ezio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 3
container_start_page 1
container_title International journal of applied and computational mathematics
container_volume 5
creator de Assis, Luciana Mafalda Elias
Massad, Eduardo
de Assis, Raul Abreu
Pazim, Rubens
Venturino, Ezio
description Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions.
doi_str_mv 10.1007/s40819-019-0689-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234548860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234548860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgqf0B3gKeV18-9-WopVqhUNF6Duk2W1Pa3Zpshf77pqzgycPw5jDz3rwh5JbBPQMoH5IEZKaAMzSawlyQAWfGFKo0-jJzITNnIK7JKKUNAHAmS-A4IJN5Q998DO0qVPTdr8POJ7qIYb320a_o8kinPq7ok_9yP6E9RBqyvt0ftq4LbUM_jqnzu3RDrmq3TX70O4fk83myGE-L2fzldfw4KyoucjiUIJ2u0TDQQjLUpQclwDGlEaE2tVKVkxKlcQ6lQr5kzAjFpeLe8CWKIbnr9-5j-33wqbObnKnJJy3PTyqJqCGrWK-qYptS9LXdx7Bz8WgZ2HNhti_Mwhm5MGuyh_eelLVNfv5v8_-mExPBal4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234548860</pqid></control><display><type>article</type><title>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</title><source>SpringerNature Journals</source><creator>de Assis, Luciana Mafalda Elias ; Massad, Eduardo ; de Assis, Raul Abreu ; Pazim, Rubens ; Venturino, Ezio</creator><creatorcontrib>de Assis, Luciana Mafalda Elias ; Massad, Eduardo ; de Assis, Raul Abreu ; Pazim, Rubens ; Venturino, Ezio</creatorcontrib><description>Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions.</description><identifier>ISSN: 2349-5103</identifier><identifier>EISSN: 2199-5796</identifier><identifier>DOI: 10.1007/s40819-019-0689-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Applications of Mathematics ; Applied mathematics ; Bifurcations ; Computational mathematics ; Computational Science and Engineering ; Economic models ; Hopf bifurcation ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Nuclear Energy ; Operations Research/Decision Theory ; Original Paper ; Response functions ; Theoretical</subject><ispartof>International journal of applied and computational mathematics, 2019-06, Vol.5 (3), p.1-23, Article 99</ispartof><rights>Springer Nature India Private Limited 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</citedby><cites>FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40819-019-0689-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40819-019-0689-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>de Assis, Luciana Mafalda Elias</creatorcontrib><creatorcontrib>Massad, Eduardo</creatorcontrib><creatorcontrib>de Assis, Raul Abreu</creatorcontrib><creatorcontrib>Pazim, Rubens</creatorcontrib><creatorcontrib>Venturino, Ezio</creatorcontrib><title>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</title><title>International journal of applied and computational mathematics</title><addtitle>Int. J. Appl. Comput. Math</addtitle><description>Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions.</description><subject>Applications of Mathematics</subject><subject>Applied mathematics</subject><subject>Bifurcations</subject><subject>Computational mathematics</subject><subject>Computational Science and Engineering</subject><subject>Economic models</subject><subject>Hopf bifurcation</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclear Energy</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Response functions</subject><subject>Theoretical</subject><issn>2349-5103</issn><issn>2199-5796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgqf0B3gKeV18-9-WopVqhUNF6Duk2W1Pa3Zpshf77pqzgycPw5jDz3rwh5JbBPQMoH5IEZKaAMzSawlyQAWfGFKo0-jJzITNnIK7JKKUNAHAmS-A4IJN5Q998DO0qVPTdr8POJ7qIYb320a_o8kinPq7ok_9yP6E9RBqyvt0ftq4LbUM_jqnzu3RDrmq3TX70O4fk83myGE-L2fzldfw4KyoucjiUIJ2u0TDQQjLUpQclwDGlEaE2tVKVkxKlcQ6lQr5kzAjFpeLe8CWKIbnr9-5j-33wqbObnKnJJy3PTyqJqCGrWK-qYptS9LXdx7Bz8WgZ2HNhti_Mwhm5MGuyh_eelLVNfv5v8_-mExPBal4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>de Assis, Luciana Mafalda Elias</creator><creator>Massad, Eduardo</creator><creator>de Assis, Raul Abreu</creator><creator>Pazim, Rubens</creator><creator>Venturino, Ezio</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</title><author>de Assis, Luciana Mafalda Elias ; Massad, Eduardo ; de Assis, Raul Abreu ; Pazim, Rubens ; Venturino, Ezio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-8404a6f89106341867e0530a156880f9f55ca44849aa84582b119352452e92b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Applied mathematics</topic><topic>Bifurcations</topic><topic>Computational mathematics</topic><topic>Computational Science and Engineering</topic><topic>Economic models</topic><topic>Hopf bifurcation</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclear Energy</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Response functions</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Assis, Luciana Mafalda Elias</creatorcontrib><creatorcontrib>Massad, Eduardo</creatorcontrib><creatorcontrib>de Assis, Raul Abreu</creatorcontrib><creatorcontrib>Pazim, Rubens</creatorcontrib><creatorcontrib>Venturino, Ezio</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of applied and computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Assis, Luciana Mafalda Elias</au><au>Massad, Eduardo</au><au>de Assis, Raul Abreu</au><au>Pazim, Rubens</au><au>Venturino, Ezio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Periodic Regimes Triggered by Herd Behaviour in Population Systems</atitle><jtitle>International journal of applied and computational mathematics</jtitle><stitle>Int. J. Appl. Comput. Math</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>5</volume><issue>3</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>99</artnum><issn>2349-5103</issn><eissn>2199-5796</eissn><abstract>Different response functions have been proposed to model predator–prey interactions. In particular, Lotka–Volterra models work with the mass action law, resulting in a Holling type I response function. More recently, authors have proposed a term proportional to the square root of the prey population, in order to model herd behaviour and group defense. We present a model in which the response function is defined piecewisely: below a certain threshold (populations too small to display group defense) we have a Lotka–Volterra type interaction and above it we have herd behaviour type response. The model is analysed using standard techniques and also complementary techniques designed specifically for piecewise systems. Both stability of equilibria and bifurcations are investigated. In particular, we were able to prove that both supercritical and subcritical Hopf bifurcations occur, one of those leading to the existence of two limit cycles (one stable and the other unstable). We conclude that the proposed model displays novel behaviour in comparison to previous models and serves as a coherent tool to model predator–prey interactions.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40819-019-0689-9</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2349-5103
ispartof International journal of applied and computational mathematics, 2019-06, Vol.5 (3), p.1-23, Article 99
issn 2349-5103
2199-5796
language eng
recordid cdi_proquest_journals_2234548860
source SpringerNature Journals
subjects Applications of Mathematics
Applied mathematics
Bifurcations
Computational mathematics
Computational Science and Engineering
Economic models
Hopf bifurcation
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Response functions
Theoretical
title On Periodic Regimes Triggered by Herd Behaviour in Population Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Periodic%20Regimes%20Triggered%20by%20Herd%20Behaviour%20in%20Population%20Systems&rft.jtitle=International%20journal%20of%20applied%20and%20computational%20mathematics&rft.au=de%20Assis,%20Luciana%20Mafalda%20Elias&rft.date=2019-06-01&rft.volume=5&rft.issue=3&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=99&rft.issn=2349-5103&rft.eissn=2199-5796&rft_id=info:doi/10.1007/s40819-019-0689-9&rft_dat=%3Cproquest_cross%3E2234548860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234548860&rft_id=info:pmid/&rfr_iscdi=true