Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet

By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combust...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion, explosion, and shock waves explosion, and shock waves, 2019-05, Vol.55 (3), p.361-371
Hauptverfasser: Xiao, Y.-L., Xia, Zh.-X., Huang, L.-Y., Ma, L.-K., Yang, D.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 3
container_start_page 361
container_title Combustion, explosion, and shock waves
container_volume 55
creator Xiao, Y.-L.
Xia, Zh.-X.
Huang, L.-Y.
Ma, L.-K.
Yang, D.-L.
description By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100 μ m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.
doi_str_mv 10.1134/S0010508219030146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234548116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234548116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c0mOdpitSAKVs9hu5nVlCRbdxOk_96UCh7E0xze997wHmOXCNeIUt2sABBSyAUWIAGVPmITTDOZ5FKlx2yyl5O9fsrOYtwAgBBKT9jyaWgp1NY0fFW3Q2P62nfcO95_EF80_svV1FS87rjhMx98l8xMpIqvmiGEHV8M1PAX026oP2cnzjSRLn7ulL0t7l7nD8nj8_1yfvuYWIm6T5xTzlVrqxCUohyrNM9SJzIBuVzrDKhau7FE4SppgUyhbWpJUK5toZRGJ6fs6pC7Df5zoNiXGz-EbnxZCjGWVTmiHik8UDb4GAO5chvq1oRdiVDuFyv_LDZ6xMETR7Z7p_Cb_L_pGy0aa64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234548116</pqid></control><display><type>article</type><title>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</title><source>SpringerLink_现刊</source><creator>Xiao, Y.-L. ; Xia, Zh.-X. ; Huang, L.-Y. ; Ma, L.-K. ; Yang, D.-L.</creator><creatorcontrib>Xiao, Y.-L. ; Xia, Zh.-X. ; Huang, L.-Y. ; Ma, L.-K. ; Yang, D.-L.</creatorcontrib><description>By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100 μ m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508219030146</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Agglomeration ; Boron ; Bypasses ; Classical and Continuum Physics ; Classical Mechanics ; Combustion chambers ; Combustion efficiency ; Computer simulation ; Control ; Dynamical Systems ; Efficiency ; Engineering ; Flow control ; Fuels ; Kerosene ; Mass flow rate ; Mass transfer ; Mathematical models ; Particle size ; Physical Chemistry ; Physics ; Physics and Astronomy ; Ramjet engines ; Reacting flow ; Slurries ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2019-05, Vol.55 (3), p.361-371</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</citedby><cites>FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508219030146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508219030146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiao, Y.-L.</creatorcontrib><creatorcontrib>Xia, Zh.-X.</creatorcontrib><creatorcontrib>Huang, L.-Y.</creatorcontrib><creatorcontrib>Ma, L.-K.</creatorcontrib><creatorcontrib>Yang, D.-L.</creatorcontrib><title>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100 μ m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.</description><subject>Agglomeration</subject><subject>Boron</subject><subject>Bypasses</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Combustion chambers</subject><subject>Combustion efficiency</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Flow control</subject><subject>Fuels</subject><subject>Kerosene</subject><subject>Mass flow rate</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Particle size</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Ramjet engines</subject><subject>Reacting flow</subject><subject>Slurries</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c0mOdpitSAKVs9hu5nVlCRbdxOk_96UCh7E0xze997wHmOXCNeIUt2sABBSyAUWIAGVPmITTDOZ5FKlx2yyl5O9fsrOYtwAgBBKT9jyaWgp1NY0fFW3Q2P62nfcO95_EF80_svV1FS87rjhMx98l8xMpIqvmiGEHV8M1PAX026oP2cnzjSRLn7ulL0t7l7nD8nj8_1yfvuYWIm6T5xTzlVrqxCUohyrNM9SJzIBuVzrDKhau7FE4SppgUyhbWpJUK5toZRGJ6fs6pC7Df5zoNiXGz-EbnxZCjGWVTmiHik8UDb4GAO5chvq1oRdiVDuFyv_LDZ6xMETR7Z7p_Cb_L_pGy0aa64</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Xiao, Y.-L.</creator><creator>Xia, Zh.-X.</creator><creator>Huang, L.-Y.</creator><creator>Ma, L.-K.</creator><creator>Yang, D.-L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</title><author>Xiao, Y.-L. ; Xia, Zh.-X. ; Huang, L.-Y. ; Ma, L.-K. ; Yang, D.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomeration</topic><topic>Boron</topic><topic>Bypasses</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Combustion chambers</topic><topic>Combustion efficiency</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Flow control</topic><topic>Fuels</topic><topic>Kerosene</topic><topic>Mass flow rate</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Particle size</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Ramjet engines</topic><topic>Reacting flow</topic><topic>Slurries</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Y.-L.</creatorcontrib><creatorcontrib>Xia, Zh.-X.</creatorcontrib><creatorcontrib>Huang, L.-Y.</creatorcontrib><creatorcontrib>Ma, L.-K.</creatorcontrib><creatorcontrib>Yang, D.-L.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Y.-L.</au><au>Xia, Zh.-X.</au><au>Huang, L.-Y.</au><au>Ma, L.-K.</au><au>Yang, D.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>55</volume><issue>3</issue><spage>361</spage><epage>371</epage><pages>361-371</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100 μ m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508219030146</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2019-05, Vol.55 (3), p.361-371
issn 0010-5082
1573-8345
language eng
recordid cdi_proquest_journals_2234548116
source SpringerLink_现刊
subjects Agglomeration
Boron
Bypasses
Classical and Continuum Physics
Classical Mechanics
Combustion chambers
Combustion efficiency
Computer simulation
Control
Dynamical Systems
Efficiency
Engineering
Flow control
Fuels
Kerosene
Mass flow rate
Mass transfer
Mathematical models
Particle size
Physical Chemistry
Physics
Physics and Astronomy
Ramjet engines
Reacting flow
Slurries
Vibration
title Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20the%20Flowfield%20in%20a%20Boron-Based%20Slurry%20Fuel%20Ramjet&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Xiao,%20Y.-L.&rft.date=2019-05-01&rft.volume=55&rft.issue=3&rft.spage=361&rft.epage=371&rft.pages=361-371&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508219030146&rft_dat=%3Cproquest_cross%3E2234548116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234548116&rft_id=info:pmid/&rfr_iscdi=true