Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet
By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combust...
Gespeichert in:
Veröffentlicht in: | Combustion, explosion, and shock waves explosion, and shock waves, 2019-05, Vol.55 (3), p.361-371 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 371 |
---|---|
container_issue | 3 |
container_start_page | 361 |
container_title | Combustion, explosion, and shock waves |
container_volume | 55 |
creator | Xiao, Y.-L. Xia, Zh.-X. Huang, L.-Y. Ma, L.-K. Yang, D.-L. |
description | By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100
μ
m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned. |
doi_str_mv | 10.1134/S0010508219030146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234548116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234548116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c0mOdpitSAKVs9hu5nVlCRbdxOk_96UCh7E0xze997wHmOXCNeIUt2sABBSyAUWIAGVPmITTDOZ5FKlx2yyl5O9fsrOYtwAgBBKT9jyaWgp1NY0fFW3Q2P62nfcO95_EF80_svV1FS87rjhMx98l8xMpIqvmiGEHV8M1PAX026oP2cnzjSRLn7ulL0t7l7nD8nj8_1yfvuYWIm6T5xTzlVrqxCUohyrNM9SJzIBuVzrDKhau7FE4SppgUyhbWpJUK5toZRGJ6fs6pC7Df5zoNiXGz-EbnxZCjGWVTmiHik8UDb4GAO5chvq1oRdiVDuFyv_LDZ6xMETR7Z7p_Cb_L_pGy0aa64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234548116</pqid></control><display><type>article</type><title>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</title><source>SpringerLink_现刊</source><creator>Xiao, Y.-L. ; Xia, Zh.-X. ; Huang, L.-Y. ; Ma, L.-K. ; Yang, D.-L.</creator><creatorcontrib>Xiao, Y.-L. ; Xia, Zh.-X. ; Huang, L.-Y. ; Ma, L.-K. ; Yang, D.-L.</creatorcontrib><description>By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100
μ
m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508219030146</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Agglomeration ; Boron ; Bypasses ; Classical and Continuum Physics ; Classical Mechanics ; Combustion chambers ; Combustion efficiency ; Computer simulation ; Control ; Dynamical Systems ; Efficiency ; Engineering ; Flow control ; Fuels ; Kerosene ; Mass flow rate ; Mass transfer ; Mathematical models ; Particle size ; Physical Chemistry ; Physics ; Physics and Astronomy ; Ramjet engines ; Reacting flow ; Slurries ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2019-05, Vol.55 (3), p.361-371</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</citedby><cites>FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508219030146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508219030146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiao, Y.-L.</creatorcontrib><creatorcontrib>Xia, Zh.-X.</creatorcontrib><creatorcontrib>Huang, L.-Y.</creatorcontrib><creatorcontrib>Ma, L.-K.</creatorcontrib><creatorcontrib>Yang, D.-L.</creatorcontrib><title>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100
μ
m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.</description><subject>Agglomeration</subject><subject>Boron</subject><subject>Bypasses</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Combustion chambers</subject><subject>Combustion efficiency</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Flow control</subject><subject>Fuels</subject><subject>Kerosene</subject><subject>Mass flow rate</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Particle size</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Ramjet engines</subject><subject>Reacting flow</subject><subject>Slurries</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c0mOdpitSAKVs9hu5nVlCRbdxOk_96UCh7E0xze997wHmOXCNeIUt2sABBSyAUWIAGVPmITTDOZ5FKlx2yyl5O9fsrOYtwAgBBKT9jyaWgp1NY0fFW3Q2P62nfcO95_EF80_svV1FS87rjhMx98l8xMpIqvmiGEHV8M1PAX026oP2cnzjSRLn7ulL0t7l7nD8nj8_1yfvuYWIm6T5xTzlVrqxCUohyrNM9SJzIBuVzrDKhau7FE4SppgUyhbWpJUK5toZRGJ6fs6pC7Df5zoNiXGz-EbnxZCjGWVTmiHik8UDb4GAO5chvq1oRdiVDuFyv_LDZ6xMETR7Z7p_Cb_L_pGy0aa64</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Xiao, Y.-L.</creator><creator>Xia, Zh.-X.</creator><creator>Huang, L.-Y.</creator><creator>Ma, L.-K.</creator><creator>Yang, D.-L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</title><author>Xiao, Y.-L. ; Xia, Zh.-X. ; Huang, L.-Y. ; Ma, L.-K. ; Yang, D.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ff4ffdbc41044e81d5875f272083b670edbf2199fd3c0ea96c5ce2e86c94461f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agglomeration</topic><topic>Boron</topic><topic>Bypasses</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Combustion chambers</topic><topic>Combustion efficiency</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Flow control</topic><topic>Fuels</topic><topic>Kerosene</topic><topic>Mass flow rate</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Particle size</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Ramjet engines</topic><topic>Reacting flow</topic><topic>Slurries</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Y.-L.</creatorcontrib><creatorcontrib>Xia, Zh.-X.</creatorcontrib><creatorcontrib>Huang, L.-Y.</creatorcontrib><creatorcontrib>Ma, L.-K.</creatorcontrib><creatorcontrib>Yang, D.-L.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Y.-L.</au><au>Xia, Zh.-X.</au><au>Huang, L.-Y.</au><au>Ma, L.-K.</au><au>Yang, D.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>55</volume><issue>3</issue><spage>361</spage><epage>371</epage><pages>361-371</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>By considering the parametric variation of an individual boron particle in a boron agglomerate, the heat transfer, and the mass transfer between the boron particle agglomerate and the surroundings, an ignition and combustion model of a boron agglomerate is proposed. An experiment of a ramjet combustor using a boron-based slurry fuel is designed and operated for the purpose of validating the ramjet configuration and verifying the combustion of boron particles. Then a mathematical model for simulating a multiphase reacting flow within the combustor of a boron-based slurry fuel ramjet is established. Kerosene droplets and boron particles are injected discretely to the burner flowfield, and their trajectories are traced using the discrete phase model. The influence of the agglomerate size, bypass air mass flow rate, initial boron particle diameter, and boron particle content on the combustion efficiency of the slurry fuels is analyzed in detail. The results show that the combustion efficiency decreases with an increase in the agglomerate radius, initial boron particle diameter, and boron particle content. The combustion efficiency increases with an increase in the mass flow rate of bypass air. If the agglomerate diameter is greater than 100
μ
m or the bypass air mass flow rate is smaller than 50 g/s, the boron particles cannot be fully burned.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508219030146</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-5082 |
ispartof | Combustion, explosion, and shock waves, 2019-05, Vol.55 (3), p.361-371 |
issn | 0010-5082 1573-8345 |
language | eng |
recordid | cdi_proquest_journals_2234548116 |
source | SpringerLink_现刊 |
subjects | Agglomeration Boron Bypasses Classical and Continuum Physics Classical Mechanics Combustion chambers Combustion efficiency Computer simulation Control Dynamical Systems Efficiency Engineering Flow control Fuels Kerosene Mass flow rate Mass transfer Mathematical models Particle size Physical Chemistry Physics Physics and Astronomy Ramjet engines Reacting flow Slurries Vibration |
title | Numerical Simulation of the Flowfield in a Boron-Based Slurry Fuel Ramjet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20the%20Flowfield%20in%20a%20Boron-Based%20Slurry%20Fuel%20Ramjet&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Xiao,%20Y.-L.&rft.date=2019-05-01&rft.volume=55&rft.issue=3&rft.spage=361&rft.epage=371&rft.pages=361-371&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508219030146&rft_dat=%3Cproquest_cross%3E2234548116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234548116&rft_id=info:pmid/&rfr_iscdi=true |