Equiareal Shape-from-Template

This paper studies the 3D reconstruction of a deformable surface from a single image and a reference surface, known as the template. This problem is known as Shape-from-Template and has been recently shown to be well-posed for isometric deformations, for which the surface bends without altering geod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2019-06, Vol.61 (5), p.607-626
Hauptverfasser: Casillas-Perez, David, Pizarro, Daniel, Fuentes-Jimenez, David, Mazo, Manuel, Bartoli, Adrien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 5
container_start_page 607
container_title Journal of mathematical imaging and vision
container_volume 61
creator Casillas-Perez, David
Pizarro, Daniel
Fuentes-Jimenez, David
Mazo, Manuel
Bartoli, Adrien
description This paper studies the 3D reconstruction of a deformable surface from a single image and a reference surface, known as the template. This problem is known as Shape-from-Template and has been recently shown to be well-posed for isometric deformations, for which the surface bends without altering geodesics. This paper studies the case of equiareal deformations. They are elastic deformations where the local area is preserved and thus include isometry as a special case. Elastic deformations have been studied before in Shape-from-Template, yet no theoretical results were given on the existence or uniqueness of solutions. The equiareal model is much more widely applicable than isometry. This paper brings Monge’s theory, widely used for studying the solutions of nonlinear first-order PDEs, to the field of 3D reconstruction. It uses this theory to establish a theoretical framework for equiareal Shape-from-Template and answers the important question of whether it is possible to reconstruct a surface exactly with a much weaker prior than isometry. We prove that equiareal Shape-from-Template has a maximum of two local solutions sufficiently near an initial curve that lies on the surface. In addition, we propose an analytical reconstruction algorithm that can recover the multiple solutions. Our algorithm uses standard numerical tools for ODEs. We use the perspective camera model and give reconstruction results with both synthetic and real examples.
doi_str_mv 10.1007/s10851-018-0862-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234545613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234545613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b58aed443f63090a9a9f3d1f864c48739cab20309ff4975a99bf9f2fe00d5eaf3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEd_gAtBcB29N-8sZRgfMODCcR3SNtEZ2mknaRf-eztUcOXqLs75zoWPkGuEewTQDxnBSKSAhoJRjMoTUqDUnGpl-CkpwDJBrQV9Ti5y3gGAYagLcrM6jFufgm9u3798H2hMXUs3oe0bP4RLchZ9k8PV712Qj6fVZvlC12_Pr8vHNa04qoGW0vhQC8Gj4mDBW28jrzEaJSphNLeVLxlMUYzCaumtLaONLAaAWgYf-YLczbt96g5jyIPbdWPaTy8dY1xIIRXyqYVzq0pdzilE16dt69O3Q3BHC2624CYL7mjByYlhM5On7v4zpL_l_6EfJjldmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234545613</pqid></control><display><type>article</type><title>Equiareal Shape-from-Template</title><source>SpringerLink Journals - AutoHoldings</source><creator>Casillas-Perez, David ; Pizarro, Daniel ; Fuentes-Jimenez, David ; Mazo, Manuel ; Bartoli, Adrien</creator><creatorcontrib>Casillas-Perez, David ; Pizarro, Daniel ; Fuentes-Jimenez, David ; Mazo, Manuel ; Bartoli, Adrien</creatorcontrib><description>This paper studies the 3D reconstruction of a deformable surface from a single image and a reference surface, known as the template. This problem is known as Shape-from-Template and has been recently shown to be well-posed for isometric deformations, for which the surface bends without altering geodesics. This paper studies the case of equiareal deformations. They are elastic deformations where the local area is preserved and thus include isometry as a special case. Elastic deformations have been studied before in Shape-from-Template, yet no theoretical results were given on the existence or uniqueness of solutions. The equiareal model is much more widely applicable than isometry. This paper brings Monge’s theory, widely used for studying the solutions of nonlinear first-order PDEs, to the field of 3D reconstruction. It uses this theory to establish a theoretical framework for equiareal Shape-from-Template and answers the important question of whether it is possible to reconstruct a surface exactly with a much weaker prior than isometry. We prove that equiareal Shape-from-Template has a maximum of two local solutions sufficiently near an initial curve that lies on the surface. In addition, we propose an analytical reconstruction algorithm that can recover the multiple solutions. Our algorithm uses standard numerical tools for ODEs. We use the perspective camera model and give reconstruction results with both synthetic and real examples.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-018-0862-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Bends ; Computer Science ; Economic models ; Elastic deformation ; Formability ; Geodesy ; Image Processing and Computer Vision ; Image reconstruction ; Mathematical Methods in Physics ; Signal,Image and Speech Processing ; Well posed problems</subject><ispartof>Journal of mathematical imaging and vision, 2019-06, Vol.61 (5), p.607-626</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b58aed443f63090a9a9f3d1f864c48739cab20309ff4975a99bf9f2fe00d5eaf3</citedby><cites>FETCH-LOGICAL-c316t-b58aed443f63090a9a9f3d1f864c48739cab20309ff4975a99bf9f2fe00d5eaf3</cites><orcidid>0000-0002-5721-1242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-018-0862-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-018-0862-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Casillas-Perez, David</creatorcontrib><creatorcontrib>Pizarro, Daniel</creatorcontrib><creatorcontrib>Fuentes-Jimenez, David</creatorcontrib><creatorcontrib>Mazo, Manuel</creatorcontrib><creatorcontrib>Bartoli, Adrien</creatorcontrib><title>Equiareal Shape-from-Template</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>This paper studies the 3D reconstruction of a deformable surface from a single image and a reference surface, known as the template. This problem is known as Shape-from-Template and has been recently shown to be well-posed for isometric deformations, for which the surface bends without altering geodesics. This paper studies the case of equiareal deformations. They are elastic deformations where the local area is preserved and thus include isometry as a special case. Elastic deformations have been studied before in Shape-from-Template, yet no theoretical results were given on the existence or uniqueness of solutions. The equiareal model is much more widely applicable than isometry. This paper brings Monge’s theory, widely used for studying the solutions of nonlinear first-order PDEs, to the field of 3D reconstruction. It uses this theory to establish a theoretical framework for equiareal Shape-from-Template and answers the important question of whether it is possible to reconstruct a surface exactly with a much weaker prior than isometry. We prove that equiareal Shape-from-Template has a maximum of two local solutions sufficiently near an initial curve that lies on the surface. In addition, we propose an analytical reconstruction algorithm that can recover the multiple solutions. Our algorithm uses standard numerical tools for ODEs. We use the perspective camera model and give reconstruction results with both synthetic and real examples.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Bends</subject><subject>Computer Science</subject><subject>Economic models</subject><subject>Elastic deformation</subject><subject>Formability</subject><subject>Geodesy</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Mathematical Methods in Physics</subject><subject>Signal,Image and Speech Processing</subject><subject>Well posed problems</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEd_gAtBcB29N-8sZRgfMODCcR3SNtEZ2mknaRf-eztUcOXqLs75zoWPkGuEewTQDxnBSKSAhoJRjMoTUqDUnGpl-CkpwDJBrQV9Ti5y3gGAYagLcrM6jFufgm9u3798H2hMXUs3oe0bP4RLchZ9k8PV712Qj6fVZvlC12_Pr8vHNa04qoGW0vhQC8Gj4mDBW28jrzEaJSphNLeVLxlMUYzCaumtLaONLAaAWgYf-YLczbt96g5jyIPbdWPaTy8dY1xIIRXyqYVzq0pdzilE16dt69O3Q3BHC2624CYL7mjByYlhM5On7v4zpL_l_6EfJjldmw</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Casillas-Perez, David</creator><creator>Pizarro, Daniel</creator><creator>Fuentes-Jimenez, David</creator><creator>Mazo, Manuel</creator><creator>Bartoli, Adrien</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5721-1242</orcidid></search><sort><creationdate>20190615</creationdate><title>Equiareal Shape-from-Template</title><author>Casillas-Perez, David ; Pizarro, Daniel ; Fuentes-Jimenez, David ; Mazo, Manuel ; Bartoli, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b58aed443f63090a9a9f3d1f864c48739cab20309ff4975a99bf9f2fe00d5eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Bends</topic><topic>Computer Science</topic><topic>Economic models</topic><topic>Elastic deformation</topic><topic>Formability</topic><topic>Geodesy</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Mathematical Methods in Physics</topic><topic>Signal,Image and Speech Processing</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casillas-Perez, David</creatorcontrib><creatorcontrib>Pizarro, Daniel</creatorcontrib><creatorcontrib>Fuentes-Jimenez, David</creatorcontrib><creatorcontrib>Mazo, Manuel</creatorcontrib><creatorcontrib>Bartoli, Adrien</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casillas-Perez, David</au><au>Pizarro, Daniel</au><au>Fuentes-Jimenez, David</au><au>Mazo, Manuel</au><au>Bartoli, Adrien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equiareal Shape-from-Template</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2019-06-15</date><risdate>2019</risdate><volume>61</volume><issue>5</issue><spage>607</spage><epage>626</epage><pages>607-626</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>This paper studies the 3D reconstruction of a deformable surface from a single image and a reference surface, known as the template. This problem is known as Shape-from-Template and has been recently shown to be well-posed for isometric deformations, for which the surface bends without altering geodesics. This paper studies the case of equiareal deformations. They are elastic deformations where the local area is preserved and thus include isometry as a special case. Elastic deformations have been studied before in Shape-from-Template, yet no theoretical results were given on the existence or uniqueness of solutions. The equiareal model is much more widely applicable than isometry. This paper brings Monge’s theory, widely used for studying the solutions of nonlinear first-order PDEs, to the field of 3D reconstruction. It uses this theory to establish a theoretical framework for equiareal Shape-from-Template and answers the important question of whether it is possible to reconstruct a surface exactly with a much weaker prior than isometry. We prove that equiareal Shape-from-Template has a maximum of two local solutions sufficiently near an initial curve that lies on the surface. In addition, we propose an analytical reconstruction algorithm that can recover the multiple solutions. Our algorithm uses standard numerical tools for ODEs. We use the perspective camera model and give reconstruction results with both synthetic and real examples.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-018-0862-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5721-1242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2019-06, Vol.61 (5), p.607-626
issn 0924-9907
1573-7683
language eng
recordid cdi_proquest_journals_2234545613
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Applications of Mathematics
Bends
Computer Science
Economic models
Elastic deformation
Formability
Geodesy
Image Processing and Computer Vision
Image reconstruction
Mathematical Methods in Physics
Signal,Image and Speech Processing
Well posed problems
title Equiareal Shape-from-Template
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equiareal%20Shape-from-Template&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Casillas-Perez,%20David&rft.date=2019-06-15&rft.volume=61&rft.issue=5&rft.spage=607&rft.epage=626&rft.pages=607-626&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-018-0862-5&rft_dat=%3Cproquest_cross%3E2234545613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234545613&rft_id=info:pmid/&rfr_iscdi=true