Improving coarsening resistance of dilute Al-Sc-Zr-Si alloys with Sr or Zn additions
We study the effect of a small addition of Zn (0.5 at.%) or a micro-addition of Sr (0.005 at.%) to a dilute Al-0.05Sc-0.07Zr-0.02Si (at.%) on precipitation of Al3(Sc,Zr) nanoprecipitates. Upon aging at 400 °C, both the Zn- and Sr-modified alloys retain peak-aged hardness (600 ± 10 MPa) for at least...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-04, Vol.754, p.447-456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the effect of a small addition of Zn (0.5 at.%) or a micro-addition of Sr (0.005 at.%) to a dilute Al-0.05Sc-0.07Zr-0.02Si (at.%) on precipitation of Al3(Sc,Zr) nanoprecipitates. Upon aging at 400 °C, both the Zn- and Sr-modified alloys retain peak-aged hardness (600 ± 10 MPa) for at least two weeks, while the Zn/Sr-free control alloy shows lower peak hardness (475 ± 8 MPa), which starts dropping after only 3 days. Similarly, peak hardness values achieved at 475 °C during isochronal aging, are much higher for the Zn/Sr-modified alloy (610 ± 10 and 590 ± 14 MPa) than for the Zn/Sr-free alloy (480 ± 5 MPa). Local electrode atom probe tomography shows that Sr and Zn atoms segregate to the Al3(Sc,Zr) nanoprecipitates: up to 0.1 at. % for Sr, and up to 1.1 at.% for Zn, with a peak of ∼5 at.% at the interface with the matrix. This may affect their coarsening rate by (i) reducing the diffusivity of Sc and Zr in the matrix and (ii) altering the precipitate/matrix interfacial energy. In the peak-aged condition, the Zn-modified alloy has the same creep resistance at 300 °C than the Zn-free control alloy, but its higher overaging resistance allows for longer creep operating times. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2019.03.104 |