Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters

Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2019-06, Vol.7 (11), p.n/a
Hauptverfasser: Wei, Xiaofang, Li, Zhiyi, Hu, Taiping, Duan, Ruihong, Liu, Jianjun, Wang, Ruifang, Liu, Yanwei, Hu, Xiaoxiao, Yi, Yuanping, Wang, Pengfei, Wang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Advanced optical materials
container_volume 7
creator Wei, Xiaofang
Li, Zhiyi
Hu, Taiping
Duan, Ruihong
Liu, Jianjun
Wang, Ruifang
Liu, Yanwei
Hu, Xiaoxiao
Yi, Yuanping
Wang, Pengfei
Wang, Ying
description Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency. Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134.
doi_str_mv 10.1002/adom.201801767
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234420649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234420649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</originalsourceid><addsrcrecordid>eNqFUc1OAjEQ3hhNNMrVcxPPYNtd2O0RAcEEwwHum253CiWlxbar2Zvv4Gv4VD6JRYx68zCZmcz3M8mXJNcE9wjG9JbXdtejmBSY5IP8JLmghPW7BOfk9M98nnS832KM45KyLL9I3pdN5YMKTVDWoJE10rod_1ruuOZGgEdhA2jhhdKaB-vQMjgw67BB3NRoqcxaQ_h4fVs5tY8Tmhhw6xZN-R5FLTRT641u0URKJRSYgMYRO4w1RqsNRC8dr0MR1DMPUKMxaN7Gfq8b68ALiB-gyU6FAM5fJWeSaw-d736ZrO4nq9GsO19MH0bDeVekRZp3c0HrGpNsUMmBIH0uMeEFzznHrM9SVtG0EpJVBFf9Kq8pEZDJqpAUCpbJFNLL5OYou3f2qQEfyq1tnImOJaVpllE8yFhE9Y4o4az3DmS5d2rHXVsSXB4yKQ-ZlD-ZRAI7El6UhvYfdDkcLx5_uZ8Yz5b6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234420649</pqid></control><display><type>article</type><title>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Xiaofang ; Li, Zhiyi ; Hu, Taiping ; Duan, Ruihong ; Liu, Jianjun ; Wang, Ruifang ; Liu, Yanwei ; Hu, Xiaoxiao ; Yi, Yuanping ; Wang, Pengfei ; Wang, Ying</creator><creatorcontrib>Wei, Xiaofang ; Li, Zhiyi ; Hu, Taiping ; Duan, Ruihong ; Liu, Jianjun ; Wang, Ruifang ; Liu, Yanwei ; Hu, Xiaoxiao ; Yi, Yuanping ; Wang, Pengfei ; Wang, Ying</creatorcontrib><description>Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency. Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201801767</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Doped films ; Emission ; Emitters ; Energy gap ; Excitons ; Fluorescence ; Isomers ; Materials science ; Optics ; organic light‐emitting diodes ; oscillator strength ; Photoluminescence ; Quantum efficiency ; singlet–triplet energy gap ; Steric hindrance ; Substitutes ; Synergistic effect ; thermally activated delayed fluorescence</subject><ispartof>Advanced optical materials, 2019-06, Vol.7 (11), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</citedby><cites>FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</cites><orcidid>0000-0001-6638-8026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201801767$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201801767$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wei, Xiaofang</creatorcontrib><creatorcontrib>Li, Zhiyi</creatorcontrib><creatorcontrib>Hu, Taiping</creatorcontrib><creatorcontrib>Duan, Ruihong</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Wang, Ruifang</creatorcontrib><creatorcontrib>Liu, Yanwei</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><title>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</title><title>Advanced optical materials</title><description>Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency. Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134.</description><subject>Doped films</subject><subject>Emission</subject><subject>Emitters</subject><subject>Energy gap</subject><subject>Excitons</subject><subject>Fluorescence</subject><subject>Isomers</subject><subject>Materials science</subject><subject>Optics</subject><subject>organic light‐emitting diodes</subject><subject>oscillator strength</subject><subject>Photoluminescence</subject><subject>Quantum efficiency</subject><subject>singlet–triplet energy gap</subject><subject>Steric hindrance</subject><subject>Substitutes</subject><subject>Synergistic effect</subject><subject>thermally activated delayed fluorescence</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUc1OAjEQ3hhNNMrVcxPPYNtd2O0RAcEEwwHum253CiWlxbar2Zvv4Gv4VD6JRYx68zCZmcz3M8mXJNcE9wjG9JbXdtejmBSY5IP8JLmghPW7BOfk9M98nnS832KM45KyLL9I3pdN5YMKTVDWoJE10rod_1ruuOZGgEdhA2jhhdKaB-vQMjgw67BB3NRoqcxaQ_h4fVs5tY8Tmhhw6xZN-R5FLTRT641u0URKJRSYgMYRO4w1RqsNRC8dr0MR1DMPUKMxaN7Gfq8b68ALiB-gyU6FAM5fJWeSaw-d736ZrO4nq9GsO19MH0bDeVekRZp3c0HrGpNsUMmBIH0uMeEFzznHrM9SVtG0EpJVBFf9Kq8pEZDJqpAUCpbJFNLL5OYou3f2qQEfyq1tnImOJaVpllE8yFhE9Y4o4az3DmS5d2rHXVsSXB4yKQ-ZlD-ZRAI7El6UhvYfdDkcLx5_uZ8Yz5b6</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wei, Xiaofang</creator><creator>Li, Zhiyi</creator><creator>Hu, Taiping</creator><creator>Duan, Ruihong</creator><creator>Liu, Jianjun</creator><creator>Wang, Ruifang</creator><creator>Liu, Yanwei</creator><creator>Hu, Xiaoxiao</creator><creator>Yi, Yuanping</creator><creator>Wang, Pengfei</creator><creator>Wang, Ying</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6638-8026</orcidid></search><sort><creationdate>20190601</creationdate><title>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</title><author>Wei, Xiaofang ; Li, Zhiyi ; Hu, Taiping ; Duan, Ruihong ; Liu, Jianjun ; Wang, Ruifang ; Liu, Yanwei ; Hu, Xiaoxiao ; Yi, Yuanping ; Wang, Pengfei ; Wang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Doped films</topic><topic>Emission</topic><topic>Emitters</topic><topic>Energy gap</topic><topic>Excitons</topic><topic>Fluorescence</topic><topic>Isomers</topic><topic>Materials science</topic><topic>Optics</topic><topic>organic light‐emitting diodes</topic><topic>oscillator strength</topic><topic>Photoluminescence</topic><topic>Quantum efficiency</topic><topic>singlet–triplet energy gap</topic><topic>Steric hindrance</topic><topic>Substitutes</topic><topic>Synergistic effect</topic><topic>thermally activated delayed fluorescence</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaofang</creatorcontrib><creatorcontrib>Li, Zhiyi</creatorcontrib><creatorcontrib>Hu, Taiping</creatorcontrib><creatorcontrib>Duan, Ruihong</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Wang, Ruifang</creatorcontrib><creatorcontrib>Liu, Yanwei</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaofang</au><au>Li, Zhiyi</au><au>Hu, Taiping</au><au>Duan, Ruihong</au><au>Liu, Jianjun</au><au>Wang, Ruifang</au><au>Liu, Yanwei</au><au>Hu, Xiaoxiao</au><au>Yi, Yuanping</au><au>Wang, Pengfei</au><au>Wang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</atitle><jtitle>Advanced optical materials</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>7</volume><issue>11</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency. Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201801767</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6638-8026</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2019-06, Vol.7 (11), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2234420649
source Wiley Online Library Journals Frontfile Complete
subjects Doped films
Emission
Emitters
Energy gap
Excitons
Fluorescence
Isomers
Materials science
Optics
organic light‐emitting diodes
oscillator strength
Photoluminescence
Quantum efficiency
singlet–triplet energy gap
Steric hindrance
Substitutes
Synergistic effect
thermally activated delayed fluorescence
title Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitution%20Conformation%20Balances%20the%20Oscillator%20Strength%20and%20Singlet%E2%80%93Triplet%20Energy%20Gap%20for%20Highly%20Efficient%20D%E2%80%93A%E2%80%93D%20Thermally%20Activated%20Delayed%20Fluorescence%20Emitters&rft.jtitle=Advanced%20optical%20materials&rft.au=Wei,%20Xiaofang&rft.date=2019-06-01&rft.volume=7&rft.issue=11&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201801767&rft_dat=%3Cproquest_cross%3E2234420649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234420649&rft_id=info:pmid/&rfr_iscdi=true