Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters
Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscill...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2019-06, Vol.7 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 7 |
creator | Wei, Xiaofang Li, Zhiyi Hu, Taiping Duan, Ruihong Liu, Jianjun Wang, Ruifang Liu, Yanwei Hu, Xiaoxiao Yi, Yuanping Wang, Pengfei Wang, Ying |
description | Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency.
Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134. |
doi_str_mv | 10.1002/adom.201801767 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2234420649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2234420649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</originalsourceid><addsrcrecordid>eNqFUc1OAjEQ3hhNNMrVcxPPYNtd2O0RAcEEwwHum253CiWlxbar2Zvv4Gv4VD6JRYx68zCZmcz3M8mXJNcE9wjG9JbXdtejmBSY5IP8JLmghPW7BOfk9M98nnS832KM45KyLL9I3pdN5YMKTVDWoJE10rod_1ruuOZGgEdhA2jhhdKaB-vQMjgw67BB3NRoqcxaQ_h4fVs5tY8Tmhhw6xZN-R5FLTRT641u0URKJRSYgMYRO4w1RqsNRC8dr0MR1DMPUKMxaN7Gfq8b68ALiB-gyU6FAM5fJWeSaw-d736ZrO4nq9GsO19MH0bDeVekRZp3c0HrGpNsUMmBIH0uMeEFzznHrM9SVtG0EpJVBFf9Kq8pEZDJqpAUCpbJFNLL5OYou3f2qQEfyq1tnImOJaVpllE8yFhE9Y4o4az3DmS5d2rHXVsSXB4yKQ-ZlD-ZRAI7El6UhvYfdDkcLx5_uZ8Yz5b6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2234420649</pqid></control><display><type>article</type><title>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wei, Xiaofang ; Li, Zhiyi ; Hu, Taiping ; Duan, Ruihong ; Liu, Jianjun ; Wang, Ruifang ; Liu, Yanwei ; Hu, Xiaoxiao ; Yi, Yuanping ; Wang, Pengfei ; Wang, Ying</creator><creatorcontrib>Wei, Xiaofang ; Li, Zhiyi ; Hu, Taiping ; Duan, Ruihong ; Liu, Jianjun ; Wang, Ruifang ; Liu, Yanwei ; Hu, Xiaoxiao ; Yi, Yuanping ; Wang, Pengfei ; Wang, Ying</creatorcontrib><description>Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency.
Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201801767</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Doped films ; Emission ; Emitters ; Energy gap ; Excitons ; Fluorescence ; Isomers ; Materials science ; Optics ; organic light‐emitting diodes ; oscillator strength ; Photoluminescence ; Quantum efficiency ; singlet–triplet energy gap ; Steric hindrance ; Substitutes ; Synergistic effect ; thermally activated delayed fluorescence</subject><ispartof>Advanced optical materials, 2019-06, Vol.7 (11), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</citedby><cites>FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</cites><orcidid>0000-0001-6638-8026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201801767$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201801767$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wei, Xiaofang</creatorcontrib><creatorcontrib>Li, Zhiyi</creatorcontrib><creatorcontrib>Hu, Taiping</creatorcontrib><creatorcontrib>Duan, Ruihong</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Wang, Ruifang</creatorcontrib><creatorcontrib>Liu, Yanwei</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><title>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</title><title>Advanced optical materials</title><description>Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency.
Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134.</description><subject>Doped films</subject><subject>Emission</subject><subject>Emitters</subject><subject>Energy gap</subject><subject>Excitons</subject><subject>Fluorescence</subject><subject>Isomers</subject><subject>Materials science</subject><subject>Optics</subject><subject>organic light‐emitting diodes</subject><subject>oscillator strength</subject><subject>Photoluminescence</subject><subject>Quantum efficiency</subject><subject>singlet–triplet energy gap</subject><subject>Steric hindrance</subject><subject>Substitutes</subject><subject>Synergistic effect</subject><subject>thermally activated delayed fluorescence</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUc1OAjEQ3hhNNMrVcxPPYNtd2O0RAcEEwwHum253CiWlxbar2Zvv4Gv4VD6JRYx68zCZmcz3M8mXJNcE9wjG9JbXdtejmBSY5IP8JLmghPW7BOfk9M98nnS832KM45KyLL9I3pdN5YMKTVDWoJE10rod_1ruuOZGgEdhA2jhhdKaB-vQMjgw67BB3NRoqcxaQ_h4fVs5tY8Tmhhw6xZN-R5FLTRT641u0URKJRSYgMYRO4w1RqsNRC8dr0MR1DMPUKMxaN7Gfq8b68ALiB-gyU6FAM5fJWeSaw-d736ZrO4nq9GsO19MH0bDeVekRZp3c0HrGpNsUMmBIH0uMeEFzznHrM9SVtG0EpJVBFf9Kq8pEZDJqpAUCpbJFNLL5OYou3f2qQEfyq1tnImOJaVpllE8yFhE9Y4o4az3DmS5d2rHXVsSXB4yKQ-ZlD-ZRAI7El6UhvYfdDkcLx5_uZ8Yz5b6</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wei, Xiaofang</creator><creator>Li, Zhiyi</creator><creator>Hu, Taiping</creator><creator>Duan, Ruihong</creator><creator>Liu, Jianjun</creator><creator>Wang, Ruifang</creator><creator>Liu, Yanwei</creator><creator>Hu, Xiaoxiao</creator><creator>Yi, Yuanping</creator><creator>Wang, Pengfei</creator><creator>Wang, Ying</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6638-8026</orcidid></search><sort><creationdate>20190601</creationdate><title>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</title><author>Wei, Xiaofang ; Li, Zhiyi ; Hu, Taiping ; Duan, Ruihong ; Liu, Jianjun ; Wang, Ruifang ; Liu, Yanwei ; Hu, Xiaoxiao ; Yi, Yuanping ; Wang, Pengfei ; Wang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3837-7c2dd0146bf6c15af01a8a7aa095939b23bcf9b10b5b7d21ce4fb8f2e894f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Doped films</topic><topic>Emission</topic><topic>Emitters</topic><topic>Energy gap</topic><topic>Excitons</topic><topic>Fluorescence</topic><topic>Isomers</topic><topic>Materials science</topic><topic>Optics</topic><topic>organic light‐emitting diodes</topic><topic>oscillator strength</topic><topic>Photoluminescence</topic><topic>Quantum efficiency</topic><topic>singlet–triplet energy gap</topic><topic>Steric hindrance</topic><topic>Substitutes</topic><topic>Synergistic effect</topic><topic>thermally activated delayed fluorescence</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xiaofang</creatorcontrib><creatorcontrib>Li, Zhiyi</creatorcontrib><creatorcontrib>Hu, Taiping</creatorcontrib><creatorcontrib>Duan, Ruihong</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><creatorcontrib>Wang, Ruifang</creatorcontrib><creatorcontrib>Liu, Yanwei</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xiaofang</au><au>Li, Zhiyi</au><au>Hu, Taiping</au><au>Duan, Ruihong</au><au>Liu, Jianjun</au><au>Wang, Ruifang</au><au>Liu, Yanwei</au><au>Hu, Xiaoxiao</au><au>Yi, Yuanping</au><au>Wang, Pengfei</au><au>Wang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters</atitle><jtitle>Advanced optical materials</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>7</volume><issue>11</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Four donor–acceptor–donor region isomers (2,3‐TXO‐PhCz, 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz) are designed. The substitution positions of the two PhCz units significantly impact the photophysical properties of the isomers, especially for the singlet–triplet energy splitting (ΔEST) and oscillator strength (f ). 2,3‐TXO‐PhCz exhibits weak emission due to the large steric hindrance of the two PhCz units. While 2,6‐TXO‐PhCz, 2,7‐TXO‐PhCz, and 3,6‐TXO‐PhCz all exhibit strong emission. The four emitters possess small ΔEST of 0.01–0.24 eV; the corresponding f values are 0.064, 0.107, 0.026, and 0.134. Consequently, the photoluminescence quantum yields (PLQYs) of the doped films in CBP host are: 62.1% for 2,3‐TXO‐PhCz, 83.8% for 2,6‐TXO‐PhCz, 89.0% for 2,7‐TXO‐PhCz, and 85.4% for 3,6‐TXO‐PhCz. Although notable divergences of f and ΔEST exist between 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz, similar PLQY of doped film in the CBP host, and exciton utilization and external quantum efficiency (EQE) of the corresponding devices can be achieved: 2,6‐TXO‐PhCz and 2,7‐TXO‐PhCz endow the organic light‐emitting devices with high EQE of 23.2% and 24.4%. This proximity can be attributed to the synergistic effect of f and ΔEST. This finding highlights the beneficial role of the different linking positions on the acceptor unit in facilitating the adjustment of f and ΔEST in order to improve the device efficiency.
Different substitution positions of the acceptor unit impact the adjustment of the oscillator strength (f) and singlet–triplet energy gap (ΔEST), which facilitates the balance of photoluminescence quantum yield (PLQY) and ΔEST. The four emitters possess small ΔEST of 0.24, 0.20, 0.01, and 0.22 eV with excellent thermally activated delayed fluorescence (TADF) characteristics; the corresponding f values are 0.064, 0.107, 0.026 and 0.134.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201801767</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6638-8026</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2019-06, Vol.7 (11), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2234420649 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Doped films Emission Emitters Energy gap Excitons Fluorescence Isomers Materials science Optics organic light‐emitting diodes oscillator strength Photoluminescence Quantum efficiency singlet–triplet energy gap Steric hindrance Substitutes Synergistic effect thermally activated delayed fluorescence |
title | Substitution Conformation Balances the Oscillator Strength and Singlet–Triplet Energy Gap for Highly Efficient D–A–D Thermally Activated Delayed Fluorescence Emitters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitution%20Conformation%20Balances%20the%20Oscillator%20Strength%20and%20Singlet%E2%80%93Triplet%20Energy%20Gap%20for%20Highly%20Efficient%20D%E2%80%93A%E2%80%93D%20Thermally%20Activated%20Delayed%20Fluorescence%20Emitters&rft.jtitle=Advanced%20optical%20materials&rft.au=Wei,%20Xiaofang&rft.date=2019-06-01&rft.volume=7&rft.issue=11&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201801767&rft_dat=%3Cproquest_cross%3E2234420649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2234420649&rft_id=info:pmid/&rfr_iscdi=true |