Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel

Low-alloyed steels with body-centered cubic crystal structure are a material class that is widely used for sheet metal forming applications. When having an adequate crystallographic texture and microstructure, their mechanical behavior is characterized by an isotropic in-plane flow behavior in combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-05, Vol.755, p.295-306
Hauptverfasser: Diehl, Martin, Kertsch, Lukas, Traka, Konstantina, Helm, Dirk, Raabe, Dierk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue
container_start_page 295
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 755
creator Diehl, Martin
Kertsch, Lukas
Traka, Konstantina
Helm, Dirk
Raabe, Dierk
description Low-alloyed steels with body-centered cubic crystal structure are a material class that is widely used for sheet metal forming applications. When having an adequate crystallographic texture and microstructure, their mechanical behavior is characterized by an isotropic in-plane flow behavior in combination with a low yield strength. The decisive processing steps for obtaining these beneficial mechanical properties are cold rolling and subsequent annealing. While for the former the number of passes, the deformation rates, and the total thickness reduction are the main processing parameters, the latter is described mainly by the heating rate and the holding temperature and time. Primary static recrystallization during annealing subsequent to the cold rolling process alters mainly two aspects of the material state: It firstly replaces the elongated and heavily deformed grains of the cold rolled microstructure by small, globular grains with low dislocation density and secondly it changes the crystallographic texture insofar as it typically diminishes the α- and strengthens the γ-fiber texture components. In the present work, the recrystallization behavior of a commercial non-alloyed low carbon steel is studied. A quasi in situ setup that enables site-specific characterization is employed to gain a local picture of the nucleation and recrystallization process. From the Kernel Average Misorientation (KAM) values of the deformation structure, the tendency to be consumed by new grains can be predicted. Crystallographic analysis shows that the most deformed regions have either a γ-fiber orientation or belong to heavily fragmented regions. New grains nucleate especially in such highly deformed regions and inherit often the orientation from the deformation microstructure.
doi_str_mv 10.1016/j.msea.2019.02.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233946457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319301959</els_id><sourcerecordid>2233946457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-dc59854f82adb58879ad970ff95dfc028db8aa84582033306478bf26348c191b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA69aTpJcE3MjgDQZcqOuQpomkdNqZJB0Zn94MnbWrc-H_z-VD6JZAToBU912-CUblFIjIgebA6BlaEF6zrBCsOkcLEJRkJQh2ia5C6ACAFFAukP5w0WRha7SzTuPdpILDbsDBxSnFvQnRfavoxgGPFm-92yh_wCGmlsbeaH9Ied-731mTnAr34w_WyjepDtGY_hpdWNUHc3OKS_T1_PS5es3W7y9vq8d1pllNY9bqUvCysJyqtik5r4VqRQ3WirK1GihvG64UL0pOgTEGVVHzxtKKFVwTQRq2RHfz3K0fd1O6XHbj5Ie0UlLKmCiqoqyTis4q7ccQvLHy9JUkII8wZSePMOURpgQqE8xkephNJt2_d8bLoJ0ZtGldghBlO7r_7H_yYH5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233946457</pqid></control><display><type>article</type><title>Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel</title><source>Elsevier ScienceDirect Journals</source><creator>Diehl, Martin ; Kertsch, Lukas ; Traka, Konstantina ; Helm, Dirk ; Raabe, Dierk</creator><creatorcontrib>Diehl, Martin ; Kertsch, Lukas ; Traka, Konstantina ; Helm, Dirk ; Raabe, Dierk</creatorcontrib><description>Low-alloyed steels with body-centered cubic crystal structure are a material class that is widely used for sheet metal forming applications. When having an adequate crystallographic texture and microstructure, their mechanical behavior is characterized by an isotropic in-plane flow behavior in combination with a low yield strength. The decisive processing steps for obtaining these beneficial mechanical properties are cold rolling and subsequent annealing. While for the former the number of passes, the deformation rates, and the total thickness reduction are the main processing parameters, the latter is described mainly by the heating rate and the holding temperature and time. Primary static recrystallization during annealing subsequent to the cold rolling process alters mainly two aspects of the material state: It firstly replaces the elongated and heavily deformed grains of the cold rolled microstructure by small, globular grains with low dislocation density and secondly it changes the crystallographic texture insofar as it typically diminishes the α- and strengthens the γ-fiber texture components. In the present work, the recrystallization behavior of a commercial non-alloyed low carbon steel is studied. A quasi in situ setup that enables site-specific characterization is employed to gain a local picture of the nucleation and recrystallization process. From the Kernel Average Misorientation (KAM) values of the deformation structure, the tendency to be consumed by new grains can be predicted. Crystallographic analysis shows that the most deformed regions have either a γ-fiber orientation or belong to heavily fragmented regions. New grains nucleate especially in such highly deformed regions and inherit often the orientation from the deformation microstructure.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.02.032</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Cold rolling ; Crystal structure ; Crystallography ; DC04 steel ; Deformation ; Dislocation density ; EBSD ; Fiber orientation ; Grains ; Heating rate ; In situ ; Low alloy steels ; Low carbon steel ; Low carbon steels ; Mechanical properties ; Metal forming ; Metal sheets ; Microstructure ; Misalignment ; Nucleation ; Process parameters ; Recrystallization ; Site-specific characterization ; Texture</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-05, Vol.755, p.295-306</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 7, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-dc59854f82adb58879ad970ff95dfc028db8aa84582033306478bf26348c191b3</citedby><cites>FETCH-LOGICAL-c372t-dc59854f82adb58879ad970ff95dfc028db8aa84582033306478bf26348c191b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.02.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Diehl, Martin</creatorcontrib><creatorcontrib>Kertsch, Lukas</creatorcontrib><creatorcontrib>Traka, Konstantina</creatorcontrib><creatorcontrib>Helm, Dirk</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><title>Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Low-alloyed steels with body-centered cubic crystal structure are a material class that is widely used for sheet metal forming applications. When having an adequate crystallographic texture and microstructure, their mechanical behavior is characterized by an isotropic in-plane flow behavior in combination with a low yield strength. The decisive processing steps for obtaining these beneficial mechanical properties are cold rolling and subsequent annealing. While for the former the number of passes, the deformation rates, and the total thickness reduction are the main processing parameters, the latter is described mainly by the heating rate and the holding temperature and time. Primary static recrystallization during annealing subsequent to the cold rolling process alters mainly two aspects of the material state: It firstly replaces the elongated and heavily deformed grains of the cold rolled microstructure by small, globular grains with low dislocation density and secondly it changes the crystallographic texture insofar as it typically diminishes the α- and strengthens the γ-fiber texture components. In the present work, the recrystallization behavior of a commercial non-alloyed low carbon steel is studied. A quasi in situ setup that enables site-specific characterization is employed to gain a local picture of the nucleation and recrystallization process. From the Kernel Average Misorientation (KAM) values of the deformation structure, the tendency to be consumed by new grains can be predicted. Crystallographic analysis shows that the most deformed regions have either a γ-fiber orientation or belong to heavily fragmented regions. New grains nucleate especially in such highly deformed regions and inherit often the orientation from the deformation microstructure.</description><subject>Annealing</subject><subject>Cold rolling</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>DC04 steel</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>EBSD</subject><subject>Fiber orientation</subject><subject>Grains</subject><subject>Heating rate</subject><subject>In situ</subject><subject>Low alloy steels</subject><subject>Low carbon steel</subject><subject>Low carbon steels</subject><subject>Mechanical properties</subject><subject>Metal forming</subject><subject>Metal sheets</subject><subject>Microstructure</subject><subject>Misalignment</subject><subject>Nucleation</subject><subject>Process parameters</subject><subject>Recrystallization</subject><subject>Site-specific characterization</subject><subject>Texture</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuA69aTpJcE3MjgDQZcqOuQpomkdNqZJB0Zn94MnbWrc-H_z-VD6JZAToBU912-CUblFIjIgebA6BlaEF6zrBCsOkcLEJRkJQh2ia5C6ACAFFAukP5w0WRha7SzTuPdpILDbsDBxSnFvQnRfavoxgGPFm-92yh_wCGmlsbeaH9Ied-731mTnAr34w_WyjepDtGY_hpdWNUHc3OKS_T1_PS5es3W7y9vq8d1pllNY9bqUvCysJyqtik5r4VqRQ3WirK1GihvG64UL0pOgTEGVVHzxtKKFVwTQRq2RHfz3K0fd1O6XHbj5Ie0UlLKmCiqoqyTis4q7ccQvLHy9JUkII8wZSePMOURpgQqE8xkephNJt2_d8bLoJ0ZtGldghBlO7r_7H_yYH5k</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Diehl, Martin</creator><creator>Kertsch, Lukas</creator><creator>Traka, Konstantina</creator><creator>Helm, Dirk</creator><creator>Raabe, Dierk</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190507</creationdate><title>Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel</title><author>Diehl, Martin ; Kertsch, Lukas ; Traka, Konstantina ; Helm, Dirk ; Raabe, Dierk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-dc59854f82adb58879ad970ff95dfc028db8aa84582033306478bf26348c191b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Cold rolling</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>DC04 steel</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>EBSD</topic><topic>Fiber orientation</topic><topic>Grains</topic><topic>Heating rate</topic><topic>In situ</topic><topic>Low alloy steels</topic><topic>Low carbon steel</topic><topic>Low carbon steels</topic><topic>Mechanical properties</topic><topic>Metal forming</topic><topic>Metal sheets</topic><topic>Microstructure</topic><topic>Misalignment</topic><topic>Nucleation</topic><topic>Process parameters</topic><topic>Recrystallization</topic><topic>Site-specific characterization</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diehl, Martin</creatorcontrib><creatorcontrib>Kertsch, Lukas</creatorcontrib><creatorcontrib>Traka, Konstantina</creatorcontrib><creatorcontrib>Helm, Dirk</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diehl, Martin</au><au>Kertsch, Lukas</au><au>Traka, Konstantina</au><au>Helm, Dirk</au><au>Raabe, Dierk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-05-07</date><risdate>2019</risdate><volume>755</volume><spage>295</spage><epage>306</epage><pages>295-306</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Low-alloyed steels with body-centered cubic crystal structure are a material class that is widely used for sheet metal forming applications. When having an adequate crystallographic texture and microstructure, their mechanical behavior is characterized by an isotropic in-plane flow behavior in combination with a low yield strength. The decisive processing steps for obtaining these beneficial mechanical properties are cold rolling and subsequent annealing. While for the former the number of passes, the deformation rates, and the total thickness reduction are the main processing parameters, the latter is described mainly by the heating rate and the holding temperature and time. Primary static recrystallization during annealing subsequent to the cold rolling process alters mainly two aspects of the material state: It firstly replaces the elongated and heavily deformed grains of the cold rolled microstructure by small, globular grains with low dislocation density and secondly it changes the crystallographic texture insofar as it typically diminishes the α- and strengthens the γ-fiber texture components. In the present work, the recrystallization behavior of a commercial non-alloyed low carbon steel is studied. A quasi in situ setup that enables site-specific characterization is employed to gain a local picture of the nucleation and recrystallization process. From the Kernel Average Misorientation (KAM) values of the deformation structure, the tendency to be consumed by new grains can be predicted. Crystallographic analysis shows that the most deformed regions have either a γ-fiber orientation or belong to heavily fragmented regions. New grains nucleate especially in such highly deformed regions and inherit often the orientation from the deformation microstructure.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.02.032</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-05, Vol.755, p.295-306
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2233946457
source Elsevier ScienceDirect Journals
subjects Annealing
Cold rolling
Crystal structure
Crystallography
DC04 steel
Deformation
Dislocation density
EBSD
Fiber orientation
Grains
Heating rate
In situ
Low alloy steels
Low carbon steel
Low carbon steels
Mechanical properties
Metal forming
Metal sheets
Microstructure
Misalignment
Nucleation
Process parameters
Recrystallization
Site-specific characterization
Texture
title Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20quasi%20in%20situ%20investigation%20of%20primary%20static%20recrystallization%20in%20a%20low%20carbon%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Diehl,%20Martin&rft.date=2019-05-07&rft.volume=755&rft.spage=295&rft.epage=306&rft.pages=295-306&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.02.032&rft_dat=%3Cproquest_cross%3E2233946457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233946457&rft_id=info:pmid/&rft_els_id=S0921509319301959&rfr_iscdi=true