Edge-stable equimatchable graphs
A graph G is equimatchable if every maximal matching of G has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph Gedge-stable if G∖e, that is the graph obtained by the removal...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-05, Vol.261, p.136-147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | |
container_start_page | 136 |
container_title | Discrete Applied Mathematics |
container_volume | 261 |
creator | Deniz, Zakir Ekim, Tınaz |
description | A graph G is equimatchable if every maximal matching of G has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph Gedge-stable if G∖e, that is the graph obtained by the removal of edge e from G, is also equimatchable for any e∈E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions. |
doi_str_mv | 10.1016/j.dam.2018.09.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233933309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18305158</els_id><sourcerecordid>2233933309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c4da3ffc6d02a23140d218a5b5461fb492d0f3060205696d827e0f9061cd3f713</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRMFZ_gLuC68R75yaTDK6k1AcU3Ci4G6bzaBPapp1JBP-9U-va1eXAOecePsZuEQoEFPddYfW24IBNAbIAojOWYVPzXNQ1nrMseUTOsfm8ZFcxdgCASWVsOrcrl8dBLzdu6g5ju9WDWf-qVdD7dbxmF15vorv5uxP28TR_n73ki7fn19njIjckmiE3pdXkvREWuOaEJdjUr6tlVQr0y1JyC55AAIdKSGEbXjvwEgQaS75GmrC7U-8-9IfRxUF1_Rh26aXinEgSEcjkwpPLhD7G4LzahzQ5fCsEdQShOpVAqCMIBVIlECnzcMq4NP-rdUFF07qdcbYNzgzK9u0_6R-NIWNJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233933309</pqid></control><display><type>article</type><title>Edge-stable equimatchable graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Deniz, Zakir ; Ekim, Tınaz</creator><creatorcontrib>Deniz, Zakir ; Ekim, Tınaz</creatorcontrib><description>A graph G is equimatchable if every maximal matching of G has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph Gedge-stable if G∖e, that is the graph obtained by the removal of edge e from G, is also equimatchable for any e∈E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.09.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1-well-covered ; Algorithms ; Apexes ; Edge-criticality ; Edge-stability ; Graphs ; Maximal matching ; Shedding vertex</subject><ispartof>Discrete Applied Mathematics, 2019-05, Vol.261, p.136-147</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 31, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c4da3ffc6d02a23140d218a5b5461fb492d0f3060205696d827e0f9061cd3f713</citedby><cites>FETCH-LOGICAL-c368t-c4da3ffc6d02a23140d218a5b5461fb492d0f3060205696d827e0f9061cd3f713</cites><orcidid>0000-0002-0701-0397 ; 0000-0002-1171-9294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X18305158$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Deniz, Zakir</creatorcontrib><creatorcontrib>Ekim, Tınaz</creatorcontrib><title>Edge-stable equimatchable graphs</title><title>Discrete Applied Mathematics</title><description>A graph G is equimatchable if every maximal matching of G has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph Gedge-stable if G∖e, that is the graph obtained by the removal of edge e from G, is also equimatchable for any e∈E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions.</description><subject>1-well-covered</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Edge-criticality</subject><subject>Edge-stability</subject><subject>Graphs</subject><subject>Maximal matching</subject><subject>Shedding vertex</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRMFZ_gLuC68R75yaTDK6k1AcU3Ci4G6bzaBPapp1JBP-9U-va1eXAOecePsZuEQoEFPddYfW24IBNAbIAojOWYVPzXNQ1nrMseUTOsfm8ZFcxdgCASWVsOrcrl8dBLzdu6g5ju9WDWf-qVdD7dbxmF15vorv5uxP28TR_n73ki7fn19njIjckmiE3pdXkvREWuOaEJdjUr6tlVQr0y1JyC55AAIdKSGEbXjvwEgQaS75GmrC7U-8-9IfRxUF1_Rh26aXinEgSEcjkwpPLhD7G4LzahzQ5fCsEdQShOpVAqCMIBVIlECnzcMq4NP-rdUFF07qdcbYNzgzK9u0_6R-NIWNJ</recordid><startdate>20190531</startdate><enddate>20190531</enddate><creator>Deniz, Zakir</creator><creator>Ekim, Tınaz</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0701-0397</orcidid><orcidid>https://orcid.org/0000-0002-1171-9294</orcidid></search><sort><creationdate>20190531</creationdate><title>Edge-stable equimatchable graphs</title><author>Deniz, Zakir ; Ekim, Tınaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c4da3ffc6d02a23140d218a5b5461fb492d0f3060205696d827e0f9061cd3f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1-well-covered</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Edge-criticality</topic><topic>Edge-stability</topic><topic>Graphs</topic><topic>Maximal matching</topic><topic>Shedding vertex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deniz, Zakir</creatorcontrib><creatorcontrib>Ekim, Tınaz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deniz, Zakir</au><au>Ekim, Tınaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge-stable equimatchable graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-05-31</date><risdate>2019</risdate><volume>261</volume><spage>136</spage><epage>147</epage><pages>136-147</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A graph G is equimatchable if every maximal matching of G has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph Gedge-stable if G∖e, that is the graph obtained by the removal of edge e from G, is also equimatchable for any e∈E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.09.033</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0701-0397</orcidid><orcidid>https://orcid.org/0000-0002-1171-9294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2019-05, Vol.261, p.136-147 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2233933309 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 1-well-covered Algorithms Apexes Edge-criticality Edge-stability Graphs Maximal matching Shedding vertex |
title | Edge-stable equimatchable graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge-stable%20equimatchable%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Deniz,%20Zakir&rft.date=2019-05-31&rft.volume=261&rft.spage=136&rft.epage=147&rft.pages=136-147&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.09.033&rft_dat=%3Cproquest_cross%3E2233933309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233933309&rft_id=info:pmid/&rft_els_id=S0166218X18305158&rfr_iscdi=true |