Efficient modeling of internal cracks for Laplace problem by XFEM using Joukowski mapping

Summary In this study, the extended finite element method (XFEM) is applied to the two‐dimensional Laplace equation with an internal discontinuity. The real part of a complex velocity potential from potential flow theory is used to represent the enrichment function in this technique. The Joukowski m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2019-07, Vol.119 (1), p.1-17
Hauptverfasser: Nakasumi, Shogo, Schweitzer, Marc Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title International journal for numerical methods in engineering
container_volume 119
creator Nakasumi, Shogo
Schweitzer, Marc Alexander
description Summary In this study, the extended finite element method (XFEM) is applied to the two‐dimensional Laplace equation with an internal discontinuity. The real part of a complex velocity potential from potential flow theory is used to represent the enrichment function in this technique. The Joukowski mapping, which maps a circle to a line, is mainly used to obtain a solution around an airfoil in two‐dimensional potential flow; here, we extend that solution to model magnetic flux around an internal crack. The effectiveness of the proposed method is verified using numerical examples of single and multiple cracks. The L2 error norm is used to evaluate the accuracy of the proposed method in comparison with XFEM using previously proposed enrichment functions (Heaviside and analytical forms for a single crack tip). The proposed method gives better results than those of the existing XFEM in the case of a coarse mesh.
doi_str_mv 10.1002/nme.6039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233736039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233736039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3599-a221c48b69e1646ffa00fd77f7510eb32276a5c4c1122704bea54420dc6403d93</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGT-S1EtUhZda2IAEK8txbOQ2iYPdqOrfk9BuWc1o5szo6iB0TWBGAOhd25hZBkycoAkBkSdAIT9Fk2ElklTMyTm6iHENQEgKbIK-Cmuddqbd4sZXpnbtN_YWu3ZrQqtqrIPSm4itD3ipulppg7vgy9o0uNzjz4dihfs4Hr34fuN3ceNwo7pumFyiM6vqaK6OdYo-Hor3xVOyfHt8XtwvE81SIRJFKdF8XmbCkIxn1ioAW-W5zVMCpmSU5plKNdeEDC3w0qiUcwqVzjiwSrApujn8HXL99CZu5dr3Y_YoKWUsZ6ONgbo9UDr4GIOxsguuUWEvCchRnBzEySOaHNCdq83-X06-roo__hdQhG21</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233736039</pqid></control><display><type>article</type><title>Efficient modeling of internal cracks for Laplace problem by XFEM using Joukowski mapping</title><source>Wiley Journals</source><creator>Nakasumi, Shogo ; Schweitzer, Marc Alexander</creator><creatorcontrib>Nakasumi, Shogo ; Schweitzer, Marc Alexander</creatorcontrib><description>Summary In this study, the extended finite element method (XFEM) is applied to the two‐dimensional Laplace equation with an internal discontinuity. The real part of a complex velocity potential from potential flow theory is used to represent the enrichment function in this technique. The Joukowski mapping, which maps a circle to a line, is mainly used to obtain a solution around an airfoil in two‐dimensional potential flow; here, we extend that solution to model magnetic flux around an internal crack. The effectiveness of the proposed method is verified using numerical examples of single and multiple cracks. The L2 error norm is used to evaluate the accuracy of the proposed method in comparison with XFEM using previously proposed enrichment functions (Heaviside and analytical forms for a single crack tip). The proposed method gives better results than those of the existing XFEM in the case of a coarse mesh.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6039</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Crack tips ; Cracks ; elliptic ; extended finite element method ; Finite element method ; finite element methods ; Flow theory ; inverse problem ; Laplace equation ; Magnetic flux ; Mapping ; Mathematical analysis ; partial differential equations ; partition‐of‐unity ; Potential flow</subject><ispartof>International journal for numerical methods in engineering, 2019-07, Vol.119 (1), p.1-17</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3599-a221c48b69e1646ffa00fd77f7510eb32276a5c4c1122704bea54420dc6403d93</citedby><cites>FETCH-LOGICAL-c3599-a221c48b69e1646ffa00fd77f7510eb32276a5c4c1122704bea54420dc6403d93</cites><orcidid>0000-0002-9626-9156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nakasumi, Shogo</creatorcontrib><creatorcontrib>Schweitzer, Marc Alexander</creatorcontrib><title>Efficient modeling of internal cracks for Laplace problem by XFEM using Joukowski mapping</title><title>International journal for numerical methods in engineering</title><description>Summary In this study, the extended finite element method (XFEM) is applied to the two‐dimensional Laplace equation with an internal discontinuity. The real part of a complex velocity potential from potential flow theory is used to represent the enrichment function in this technique. The Joukowski mapping, which maps a circle to a line, is mainly used to obtain a solution around an airfoil in two‐dimensional potential flow; here, we extend that solution to model magnetic flux around an internal crack. The effectiveness of the proposed method is verified using numerical examples of single and multiple cracks. The L2 error norm is used to evaluate the accuracy of the proposed method in comparison with XFEM using previously proposed enrichment functions (Heaviside and analytical forms for a single crack tip). The proposed method gives better results than those of the existing XFEM in the case of a coarse mesh.</description><subject>Crack tips</subject><subject>Cracks</subject><subject>elliptic</subject><subject>extended finite element method</subject><subject>Finite element method</subject><subject>finite element methods</subject><subject>Flow theory</subject><subject>inverse problem</subject><subject>Laplace equation</subject><subject>Magnetic flux</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>partial differential equations</subject><subject>partition‐of‐unity</subject><subject>Potential flow</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGT-S1EtUhZda2IAEK8txbOQ2iYPdqOrfk9BuWc1o5szo6iB0TWBGAOhd25hZBkycoAkBkSdAIT9Fk2ElklTMyTm6iHENQEgKbIK-Cmuddqbd4sZXpnbtN_YWu3ZrQqtqrIPSm4itD3ipulppg7vgy9o0uNzjz4dihfs4Hr34fuN3ceNwo7pumFyiM6vqaK6OdYo-Hor3xVOyfHt8XtwvE81SIRJFKdF8XmbCkIxn1ioAW-W5zVMCpmSU5plKNdeEDC3w0qiUcwqVzjiwSrApujn8HXL99CZu5dr3Y_YoKWUsZ6ONgbo9UDr4GIOxsguuUWEvCchRnBzEySOaHNCdq83-X06-roo__hdQhG21</recordid><startdate>20190706</startdate><enddate>20190706</enddate><creator>Nakasumi, Shogo</creator><creator>Schweitzer, Marc Alexander</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9626-9156</orcidid></search><sort><creationdate>20190706</creationdate><title>Efficient modeling of internal cracks for Laplace problem by XFEM using Joukowski mapping</title><author>Nakasumi, Shogo ; Schweitzer, Marc Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3599-a221c48b69e1646ffa00fd77f7510eb32276a5c4c1122704bea54420dc6403d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crack tips</topic><topic>Cracks</topic><topic>elliptic</topic><topic>extended finite element method</topic><topic>Finite element method</topic><topic>finite element methods</topic><topic>Flow theory</topic><topic>inverse problem</topic><topic>Laplace equation</topic><topic>Magnetic flux</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>partial differential equations</topic><topic>partition‐of‐unity</topic><topic>Potential flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakasumi, Shogo</creatorcontrib><creatorcontrib>Schweitzer, Marc Alexander</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakasumi, Shogo</au><au>Schweitzer, Marc Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient modeling of internal cracks for Laplace problem by XFEM using Joukowski mapping</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2019-07-06</date><risdate>2019</risdate><volume>119</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary In this study, the extended finite element method (XFEM) is applied to the two‐dimensional Laplace equation with an internal discontinuity. The real part of a complex velocity potential from potential flow theory is used to represent the enrichment function in this technique. The Joukowski mapping, which maps a circle to a line, is mainly used to obtain a solution around an airfoil in two‐dimensional potential flow; here, we extend that solution to model magnetic flux around an internal crack. The effectiveness of the proposed method is verified using numerical examples of single and multiple cracks. The L2 error norm is used to evaluate the accuracy of the proposed method in comparison with XFEM using previously proposed enrichment functions (Heaviside and analytical forms for a single crack tip). The proposed method gives better results than those of the existing XFEM in the case of a coarse mesh.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.6039</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9626-9156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2019-07, Vol.119 (1), p.1-17
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2233736039
source Wiley Journals
subjects Crack tips
Cracks
elliptic
extended finite element method
Finite element method
finite element methods
Flow theory
inverse problem
Laplace equation
Magnetic flux
Mapping
Mathematical analysis
partial differential equations
partition‐of‐unity
Potential flow
title Efficient modeling of internal cracks for Laplace problem by XFEM using Joukowski mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20modeling%20of%20internal%20cracks%20for%20Laplace%20problem%20by%20XFEM%20using%20Joukowski%20mapping&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Nakasumi,%20Shogo&rft.date=2019-07-06&rft.volume=119&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6039&rft_dat=%3Cproquest_cross%3E2233736039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233736039&rft_id=info:pmid/&rfr_iscdi=true