Use of Data Mining Methods to Detect Test Fraud
Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining method...
Gespeichert in:
Veröffentlicht in: | Journal of educational measurement 2019-06, Vol.56 (2), p.251-279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 2 |
container_start_page | 251 |
container_title | Journal of educational measurement |
container_volume | 56 |
creator | Man, Kaiwen Harring, Jeffrey R. Sinharay, Sandip |
description | Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek & Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners. |
doi_str_mv | 10.1111/jedm.12208 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2233710866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1217561</ericid><jstor_id>45148495</jstor_id><sourcerecordid>45148495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwsCNZYkNK6_NXnBH1A6hasbSz5TgOJGqbYqeq-t_jEtSBgRvuhvvde6eH0D2QAcQa1q7YDIBSoi5QD1IuEpYpfol6hFCaECnENboJoSYERCqgh4ar4HBT4rFpDV5U22r7gReu_WyKgNsGj13rbIuXLrR46s2-uEVXpVkHd_c7-2g1nSxHr8n8_eVt9DxPLONCJUaBVU4UAlRpmaMlsWWeGUulksTR-FkhSWwpz1OZZYQzIEy61EDOVc4K1kePne7ON1_7aK_rZu-30VJTylgKREkZqaeOsr4JwbtS73y1Mf6ogehTIPoUiP4JJMIPHex8Zc_gZAbxHSEh7qHbH6q1O_6jpGeT8eKPZh3axp9vuACueCbYN8I8cn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233710866</pqid></control><display><type>article</type><title>Use of Data Mining Methods to Detect Test Fraud</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>EBSCOhost Education Source</source><source>Wiley Online Library All Journals</source><creator>Man, Kaiwen ; Harring, Jeffrey R. ; Sinharay, Sandip</creator><creatorcontrib>Man, Kaiwen ; Harring, Jeffrey R. ; Sinharay, Sandip</creatorcontrib><description>Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek & Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners.</description><identifier>ISSN: 0022-0655</identifier><identifier>EISSN: 1745-3984</identifier><identifier>DOI: 10.1111/jedm.12208</identifier><language>eng</language><publisher>Madison: National Council on Measurement in Education</publisher><subject>Accuracy ; Cheating ; Data Analysis ; Data mining ; Educational evaluation ; Fraud ; Identification ; Information Retrieval ; Item Response Theory ; Measurement ; Quantitative analysis ; Reaction time ; Tests</subject><ispartof>Journal of educational measurement, 2019-06, Vol.56 (2), p.251-279</ispartof><rights>2019 National Council on Measurement in Education</rights><rights>2019 by the National Council on Measurement in Education</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</citedby><cites>FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjedm.12208$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjedm.12208$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,30998,45573,45574</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1217561$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Man, Kaiwen</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Sinharay, Sandip</creatorcontrib><title>Use of Data Mining Methods to Detect Test Fraud</title><title>Journal of educational measurement</title><description>Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek & Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners.</description><subject>Accuracy</subject><subject>Cheating</subject><subject>Data Analysis</subject><subject>Data mining</subject><subject>Educational evaluation</subject><subject>Fraud</subject><subject>Identification</subject><subject>Information Retrieval</subject><subject>Item Response Theory</subject><subject>Measurement</subject><subject>Quantitative analysis</subject><subject>Reaction time</subject><subject>Tests</subject><issn>0022-0655</issn><issn>1745-3984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp9kL1PwzAQxS0EEqWwsCNZYkNK6_NXnBH1A6hasbSz5TgOJGqbYqeq-t_jEtSBgRvuhvvde6eH0D2QAcQa1q7YDIBSoi5QD1IuEpYpfol6hFCaECnENboJoSYERCqgh4ar4HBT4rFpDV5U22r7gReu_WyKgNsGj13rbIuXLrR46s2-uEVXpVkHd_c7-2g1nSxHr8n8_eVt9DxPLONCJUaBVU4UAlRpmaMlsWWeGUulksTR-FkhSWwpz1OZZYQzIEy61EDOVc4K1kePne7ON1_7aK_rZu-30VJTylgKREkZqaeOsr4JwbtS73y1Mf6ogehTIPoUiP4JJMIPHex8Zc_gZAbxHSEh7qHbH6q1O_6jpGeT8eKPZh3axp9vuACueCbYN8I8cn0</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Man, Kaiwen</creator><creator>Harring, Jeffrey R.</creator><creator>Sinharay, Sandip</creator><general>National Council on Measurement in Education</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope></search><sort><creationdate>20190601</creationdate><title>Use of Data Mining Methods to Detect Test Fraud</title><author>Man, Kaiwen ; Harring, Jeffrey R. ; Sinharay, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Cheating</topic><topic>Data Analysis</topic><topic>Data mining</topic><topic>Educational evaluation</topic><topic>Fraud</topic><topic>Identification</topic><topic>Information Retrieval</topic><topic>Item Response Theory</topic><topic>Measurement</topic><topic>Quantitative analysis</topic><topic>Reaction time</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Kaiwen</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Sinharay, Sandip</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><jtitle>Journal of educational measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Kaiwen</au><au>Harring, Jeffrey R.</au><au>Sinharay, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1217561</ericid><atitle>Use of Data Mining Methods to Detect Test Fraud</atitle><jtitle>Journal of educational measurement</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>56</volume><issue>2</issue><spage>251</spage><epage>279</epage><pages>251-279</pages><issn>0022-0655</issn><eissn>1745-3984</eissn><abstract>Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek & Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners.</abstract><cop>Madison</cop><pub>National Council on Measurement in Education</pub><doi>10.1111/jedm.12208</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0655 |
ispartof | Journal of educational measurement, 2019-06, Vol.56 (2), p.251-279 |
issn | 0022-0655 1745-3984 |
language | eng |
recordid | cdi_proquest_journals_2233710866 |
source | Applied Social Sciences Index & Abstracts (ASSIA); EBSCOhost Education Source; Wiley Online Library All Journals |
subjects | Accuracy Cheating Data Analysis Data mining Educational evaluation Fraud Identification Information Retrieval Item Response Theory Measurement Quantitative analysis Reaction time Tests |
title | Use of Data Mining Methods to Detect Test Fraud |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Data%20Mining%20Methods%20to%20Detect%20Test%20Fraud&rft.jtitle=Journal%20of%20educational%20measurement&rft.au=Man,%20Kaiwen&rft.date=2019-06-01&rft.volume=56&rft.issue=2&rft.spage=251&rft.epage=279&rft.pages=251-279&rft.issn=0022-0655&rft.eissn=1745-3984&rft_id=info:doi/10.1111/jedm.12208&rft_dat=%3Cjstor_proqu%3E45148495%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233710866&rft_id=info:pmid/&rft_ericid=EJ1217561&rft_jstor_id=45148495&rfr_iscdi=true |