Use of Data Mining Methods to Detect Test Fraud

Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of educational measurement 2019-06, Vol.56 (2), p.251-279
Hauptverfasser: Man, Kaiwen, Harring, Jeffrey R., Sinharay, Sandip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 2
container_start_page 251
container_title Journal of educational measurement
container_volume 56
creator Man, Kaiwen
Harring, Jeffrey R.
Sinharay, Sandip
description Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek & Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners.
doi_str_mv 10.1111/jedm.12208
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2233710866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1217561</ericid><jstor_id>45148495</jstor_id><sourcerecordid>45148495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwsCNZYkNK6_NXnBH1A6hasbSz5TgOJGqbYqeq-t_jEtSBgRvuhvvde6eH0D2QAcQa1q7YDIBSoi5QD1IuEpYpfol6hFCaECnENboJoSYERCqgh4ar4HBT4rFpDV5U22r7gReu_WyKgNsGj13rbIuXLrR46s2-uEVXpVkHd_c7-2g1nSxHr8n8_eVt9DxPLONCJUaBVU4UAlRpmaMlsWWeGUulksTR-FkhSWwpz1OZZYQzIEy61EDOVc4K1kePne7ON1_7aK_rZu-30VJTylgKREkZqaeOsr4JwbtS73y1Mf6ogehTIPoUiP4JJMIPHex8Zc_gZAbxHSEh7qHbH6q1O_6jpGeT8eKPZh3axp9vuACueCbYN8I8cn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233710866</pqid></control><display><type>article</type><title>Use of Data Mining Methods to Detect Test Fraud</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>EBSCOhost Education Source</source><source>Wiley Online Library All Journals</source><creator>Man, Kaiwen ; Harring, Jeffrey R. ; Sinharay, Sandip</creator><creatorcontrib>Man, Kaiwen ; Harring, Jeffrey R. ; Sinharay, Sandip</creatorcontrib><description>Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek &amp; Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners.</description><identifier>ISSN: 0022-0655</identifier><identifier>EISSN: 1745-3984</identifier><identifier>DOI: 10.1111/jedm.12208</identifier><language>eng</language><publisher>Madison: National Council on Measurement in Education</publisher><subject>Accuracy ; Cheating ; Data Analysis ; Data mining ; Educational evaluation ; Fraud ; Identification ; Information Retrieval ; Item Response Theory ; Measurement ; Quantitative analysis ; Reaction time ; Tests</subject><ispartof>Journal of educational measurement, 2019-06, Vol.56 (2), p.251-279</ispartof><rights>2019 National Council on Measurement in Education</rights><rights>2019 by the National Council on Measurement in Education</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</citedby><cites>FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjedm.12208$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjedm.12208$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,30998,45573,45574</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1217561$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Man, Kaiwen</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Sinharay, Sandip</creatorcontrib><title>Use of Data Mining Methods to Detect Test Fraud</title><title>Journal of educational measurement</title><description>Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek &amp; Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners.</description><subject>Accuracy</subject><subject>Cheating</subject><subject>Data Analysis</subject><subject>Data mining</subject><subject>Educational evaluation</subject><subject>Fraud</subject><subject>Identification</subject><subject>Information Retrieval</subject><subject>Item Response Theory</subject><subject>Measurement</subject><subject>Quantitative analysis</subject><subject>Reaction time</subject><subject>Tests</subject><issn>0022-0655</issn><issn>1745-3984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp9kL1PwzAQxS0EEqWwsCNZYkNK6_NXnBH1A6hasbSz5TgOJGqbYqeq-t_jEtSBgRvuhvvde6eH0D2QAcQa1q7YDIBSoi5QD1IuEpYpfol6hFCaECnENboJoSYERCqgh4ar4HBT4rFpDV5U22r7gReu_WyKgNsGj13rbIuXLrR46s2-uEVXpVkHd_c7-2g1nSxHr8n8_eVt9DxPLONCJUaBVU4UAlRpmaMlsWWeGUulksTR-FkhSWwpz1OZZYQzIEy61EDOVc4K1kePne7ON1_7aK_rZu-30VJTylgKREkZqaeOsr4JwbtS73y1Mf6ogehTIPoUiP4JJMIPHex8Zc_gZAbxHSEh7qHbH6q1O_6jpGeT8eKPZh3axp9vuACueCbYN8I8cn0</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Man, Kaiwen</creator><creator>Harring, Jeffrey R.</creator><creator>Sinharay, Sandip</creator><general>National Council on Measurement in Education</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope></search><sort><creationdate>20190601</creationdate><title>Use of Data Mining Methods to Detect Test Fraud</title><author>Man, Kaiwen ; Harring, Jeffrey R. ; Sinharay, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3458-a81c8e5d518fc3e2f0cfb9ac26860e2174d6074d74b76990431036e7a1b48b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Cheating</topic><topic>Data Analysis</topic><topic>Data mining</topic><topic>Educational evaluation</topic><topic>Fraud</topic><topic>Identification</topic><topic>Information Retrieval</topic><topic>Item Response Theory</topic><topic>Measurement</topic><topic>Quantitative analysis</topic><topic>Reaction time</topic><topic>Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Kaiwen</creatorcontrib><creatorcontrib>Harring, Jeffrey R.</creatorcontrib><creatorcontrib>Sinharay, Sandip</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Journal of educational measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Kaiwen</au><au>Harring, Jeffrey R.</au><au>Sinharay, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1217561</ericid><atitle>Use of Data Mining Methods to Detect Test Fraud</atitle><jtitle>Journal of educational measurement</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>56</volume><issue>2</issue><spage>251</spage><epage>279</epage><pages>251-279</pages><issn>0022-0655</issn><eissn>1745-3984</eissn><abstract>Data mining methods have drawn considerable attention across diverse scientific fields. However, few applications could be found in the areas of psychological and educational measurement, and particularly pertinent to this article, in test security research. In this study, various data mining methods for detecting cheating behaviors on large-scale assessments are explored as an alternative to the traditional methods including person-fit statistics and similarity analysis. A common data set from the Handbook of Quantitative Methods for Detecting Cheating on Tests (Cizek &amp; Wollack) was used for comparing the performance of the different methods. The results indicated that the use of data mining methods may combine multiple sources of information about test takers ' performance, which may lead to higher detection rate over traditional item response and response time methods. Several recommendations, all based on our findings, are provided to practitioners.</abstract><cop>Madison</cop><pub>National Council on Measurement in Education</pub><doi>10.1111/jedm.12208</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0655
ispartof Journal of educational measurement, 2019-06, Vol.56 (2), p.251-279
issn 0022-0655
1745-3984
language eng
recordid cdi_proquest_journals_2233710866
source Applied Social Sciences Index & Abstracts (ASSIA); EBSCOhost Education Source; Wiley Online Library All Journals
subjects Accuracy
Cheating
Data Analysis
Data mining
Educational evaluation
Fraud
Identification
Information Retrieval
Item Response Theory
Measurement
Quantitative analysis
Reaction time
Tests
title Use of Data Mining Methods to Detect Test Fraud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Data%20Mining%20Methods%20to%20Detect%20Test%20Fraud&rft.jtitle=Journal%20of%20educational%20measurement&rft.au=Man,%20Kaiwen&rft.date=2019-06-01&rft.volume=56&rft.issue=2&rft.spage=251&rft.epage=279&rft.pages=251-279&rft.issn=0022-0655&rft.eissn=1745-3984&rft_id=info:doi/10.1111/jedm.12208&rft_dat=%3Cjstor_proqu%3E45148495%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233710866&rft_id=info:pmid/&rft_ericid=EJ1217561&rft_jstor_id=45148495&rfr_iscdi=true