Tensile, flexure, and compression properties of anisotropic microchannel epoxy foams

ABSTRACT Microvascular architectures with specific channel fractions and channel orientations have been reported for thermal insulation and functional fluid delivery applications. However, the dependence on channel network structure of the inevitable loss in strength and stiffness has not been adequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2019-09, Vol.136 (34), p.n/a
Hauptverfasser: Schmid, Eric D., Robinson, Marc J., Cross, William M., Salem, David R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page
container_title Journal of applied polymer science
container_volume 136
creator Schmid, Eric D.
Robinson, Marc J.
Cross, William M.
Salem, David R.
description ABSTRACT Microvascular architectures with specific channel fractions and channel orientations have been reported for thermal insulation and functional fluid delivery applications. However, the dependence on channel network structure of the inevitable loss in strength and stiffness has not been adequately characterized, especially at moderate‐to‐high channel fractions and in anisotropic systems. In this work, the loss in mechanical performance of a thermosetting epoxy is explored in tensile, flexure, and compression modes over a wide range of microchannel fractions and different microchannel orientations. Whereas microchannel fractions of 0.7 can result in reductions of more than 90% in mechanical properties relative to the nonchanneled material, there is a strong influence in microchannel orientation over the full range of microchannel fractions studied. The data are compared to a power‐law model, which shows a good agreement with the experimental measurements, provided that the power‐law exponent is adjusted to depend on the direction of microchannel alignment. These results demonstrate the opportunity to engineer the mechanical properties of multifunctional microchannel systems for a range of existing and emerging applications, by controlling both the microchannel volume fraction and the microchannel orientation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47945.
doi_str_mv 10.1002/app.47945
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2233039677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233039677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3345-3d9c269bd81c4ec33a0f8b7cc27a2e2532b790d91423854fe02d6f83130ef7a13</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0HAk-C2-djdbI6l-AUFe6jnkGYnmLK7iUmL7b83ul49zTDvMzMvL0K3lMwoIWyuQ5iVQpbVGZpQIkVR1qw5R5Os0aKRsrpEVyntCKG0IvUEbTYwJNfBA7YdHA8xN3posfF9iJCS8wMO0QeIewcJe5tVl_w-j5zBvTPRmw89DNBhCP54wtbrPl2jC6u7BDd_dYrenx43y5di9fb8ulysCsN5WRW8lYbVcts21JSQZ5rYZiuMYUIzYBVnWyFJK2nJeFOVFghra9twyglYoSmforvxbrb4eYC0Vzt_iEN-qRjjnHBZC5Gp-5HKZlOKYFWIrtfxpChRP6GpHJr6DS2z85H9ypmc_gfVYr0eN74BBh1uhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233039677</pqid></control><display><type>article</type><title>Tensile, flexure, and compression properties of anisotropic microchannel epoxy foams</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schmid, Eric D. ; Robinson, Marc J. ; Cross, William M. ; Salem, David R.</creator><creatorcontrib>Schmid, Eric D. ; Robinson, Marc J. ; Cross, William M. ; Salem, David R.</creatorcontrib><description>ABSTRACT Microvascular architectures with specific channel fractions and channel orientations have been reported for thermal insulation and functional fluid delivery applications. However, the dependence on channel network structure of the inevitable loss in strength and stiffness has not been adequately characterized, especially at moderate‐to‐high channel fractions and in anisotropic systems. In this work, the loss in mechanical performance of a thermosetting epoxy is explored in tensile, flexure, and compression modes over a wide range of microchannel fractions and different microchannel orientations. Whereas microchannel fractions of 0.7 can result in reductions of more than 90% in mechanical properties relative to the nonchanneled material, there is a strong influence in microchannel orientation over the full range of microchannel fractions studied. The data are compared to a power‐law model, which shows a good agreement with the experimental measurements, provided that the power‐law exponent is adjusted to depend on the direction of microchannel alignment. These results demonstrate the opportunity to engineer the mechanical properties of multifunctional microchannel systems for a range of existing and emerging applications, by controlling both the microchannel volume fraction and the microchannel orientation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47945.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.47945</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Anisotropy ; Compressive properties ; Dependence ; Flexing ; foams ; Materials science ; Mechanical properties ; Microchannels ; Plastic foam ; Polymers ; porous materials ; Stiffness ; structure‐property relations ; Thermal insulation ; thermoset</subject><ispartof>Journal of applied polymer science, 2019-09, Vol.136 (34), p.n/a</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3345-3d9c269bd81c4ec33a0f8b7cc27a2e2532b790d91423854fe02d6f83130ef7a13</citedby><cites>FETCH-LOGICAL-c3345-3d9c269bd81c4ec33a0f8b7cc27a2e2532b790d91423854fe02d6f83130ef7a13</cites><orcidid>0000-0003-4216-9405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.47945$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.47945$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Schmid, Eric D.</creatorcontrib><creatorcontrib>Robinson, Marc J.</creatorcontrib><creatorcontrib>Cross, William M.</creatorcontrib><creatorcontrib>Salem, David R.</creatorcontrib><title>Tensile, flexure, and compression properties of anisotropic microchannel epoxy foams</title><title>Journal of applied polymer science</title><description>ABSTRACT Microvascular architectures with specific channel fractions and channel orientations have been reported for thermal insulation and functional fluid delivery applications. However, the dependence on channel network structure of the inevitable loss in strength and stiffness has not been adequately characterized, especially at moderate‐to‐high channel fractions and in anisotropic systems. In this work, the loss in mechanical performance of a thermosetting epoxy is explored in tensile, flexure, and compression modes over a wide range of microchannel fractions and different microchannel orientations. Whereas microchannel fractions of 0.7 can result in reductions of more than 90% in mechanical properties relative to the nonchanneled material, there is a strong influence in microchannel orientation over the full range of microchannel fractions studied. The data are compared to a power‐law model, which shows a good agreement with the experimental measurements, provided that the power‐law exponent is adjusted to depend on the direction of microchannel alignment. These results demonstrate the opportunity to engineer the mechanical properties of multifunctional microchannel systems for a range of existing and emerging applications, by controlling both the microchannel volume fraction and the microchannel orientation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47945.</description><subject>Anisotropy</subject><subject>Compressive properties</subject><subject>Dependence</subject><subject>Flexing</subject><subject>foams</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microchannels</subject><subject>Plastic foam</subject><subject>Polymers</subject><subject>porous materials</subject><subject>Stiffness</subject><subject>structure‐property relations</subject><subject>Thermal insulation</subject><subject>thermoset</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0HAk-C2-djdbI6l-AUFe6jnkGYnmLK7iUmL7b83ul49zTDvMzMvL0K3lMwoIWyuQ5iVQpbVGZpQIkVR1qw5R5Os0aKRsrpEVyntCKG0IvUEbTYwJNfBA7YdHA8xN3posfF9iJCS8wMO0QeIewcJe5tVl_w-j5zBvTPRmw89DNBhCP54wtbrPl2jC6u7BDd_dYrenx43y5di9fb8ulysCsN5WRW8lYbVcts21JSQZ5rYZiuMYUIzYBVnWyFJK2nJeFOVFghra9twyglYoSmforvxbrb4eYC0Vzt_iEN-qRjjnHBZC5Gp-5HKZlOKYFWIrtfxpChRP6GpHJr6DS2z85H9ypmc_gfVYr0eN74BBh1uhQ</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Schmid, Eric D.</creator><creator>Robinson, Marc J.</creator><creator>Cross, William M.</creator><creator>Salem, David R.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4216-9405</orcidid></search><sort><creationdate>20190910</creationdate><title>Tensile, flexure, and compression properties of anisotropic microchannel epoxy foams</title><author>Schmid, Eric D. ; Robinson, Marc J. ; Cross, William M. ; Salem, David R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3345-3d9c269bd81c4ec33a0f8b7cc27a2e2532b790d91423854fe02d6f83130ef7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Compressive properties</topic><topic>Dependence</topic><topic>Flexing</topic><topic>foams</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microchannels</topic><topic>Plastic foam</topic><topic>Polymers</topic><topic>porous materials</topic><topic>Stiffness</topic><topic>structure‐property relations</topic><topic>Thermal insulation</topic><topic>thermoset</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmid, Eric D.</creatorcontrib><creatorcontrib>Robinson, Marc J.</creatorcontrib><creatorcontrib>Cross, William M.</creatorcontrib><creatorcontrib>Salem, David R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmid, Eric D.</au><au>Robinson, Marc J.</au><au>Cross, William M.</au><au>Salem, David R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile, flexure, and compression properties of anisotropic microchannel epoxy foams</atitle><jtitle>Journal of applied polymer science</jtitle><date>2019-09-10</date><risdate>2019</risdate><volume>136</volume><issue>34</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>ABSTRACT Microvascular architectures with specific channel fractions and channel orientations have been reported for thermal insulation and functional fluid delivery applications. However, the dependence on channel network structure of the inevitable loss in strength and stiffness has not been adequately characterized, especially at moderate‐to‐high channel fractions and in anisotropic systems. In this work, the loss in mechanical performance of a thermosetting epoxy is explored in tensile, flexure, and compression modes over a wide range of microchannel fractions and different microchannel orientations. Whereas microchannel fractions of 0.7 can result in reductions of more than 90% in mechanical properties relative to the nonchanneled material, there is a strong influence in microchannel orientation over the full range of microchannel fractions studied. The data are compared to a power‐law model, which shows a good agreement with the experimental measurements, provided that the power‐law exponent is adjusted to depend on the direction of microchannel alignment. These results demonstrate the opportunity to engineer the mechanical properties of multifunctional microchannel systems for a range of existing and emerging applications, by controlling both the microchannel volume fraction and the microchannel orientation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47945.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.47945</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4216-9405</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2019-09, Vol.136 (34), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2233039677
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropy
Compressive properties
Dependence
Flexing
foams
Materials science
Mechanical properties
Microchannels
Plastic foam
Polymers
porous materials
Stiffness
structure‐property relations
Thermal insulation
thermoset
title Tensile, flexure, and compression properties of anisotropic microchannel epoxy foams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile,%20flexure,%20and%20compression%20properties%20of%20anisotropic%20microchannel%20epoxy%20foams&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Schmid,%20Eric%20D.&rft.date=2019-09-10&rft.volume=136&rft.issue=34&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.47945&rft_dat=%3Cproquest_cross%3E2233039677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233039677&rft_id=info:pmid/&rfr_iscdi=true