Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm

The storage and transmission of medical data such as CT/MR DICOM images are an essential part of the telemedicine application. In this paper, a prediction-based lossless compression algorithm using least square approach is proposed for the compression of CT images. Prior to compression, the preproce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2020-02, Vol.39 (2), p.522-542
Hauptverfasser: Kumar, S. N., Fred, A. Lenin, Kumar, H. Ajay, Varghese, P. Sebastin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 2
container_start_page 522
container_title Circuits, systems, and signal processing
container_volume 39
creator Kumar, S. N.
Fred, A. Lenin
Kumar, H. Ajay
Varghese, P. Sebastin
description The storage and transmission of medical data such as CT/MR DICOM images are an essential part of the telemedicine application. In this paper, a prediction-based lossless compression algorithm using least square approach is proposed for the compression of CT images. Prior to compression, the preprocessing was performed by neutrosophic median filter. The gradient adjusted prediction scheme was employed for the determination of prediction coefficients, and polynomial least square fitting approach was used for optimal selection of prediction coefficients. The selected prediction coefficients are finally encoded by Huffman coder for transmission. The quality of the reconstructed image was validated by performance metrics and compared with other compression techniques like JPEG, contextual vector quantization and vector quantization using bat optimization (BAT-VQ). The proposed neutrosophic set-based least square compression algorithm was found to be efficient and tested on DICOM abdomen CT datasets. The hardware implementation was done by Raspberry Pi processor using Java platform for transferring the data through cloud network for telemedicine application.
doi_str_mv 10.1007/s00034-019-01152-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2232986267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232986267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c189a47c20e9017cc49e96e5bba040408bcec9cd4eb34ea537af07b397e3d1633</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaH-hK0LVbPWxLWgbTR8DQQhLoTsjy2HHwI5GcQv6-Sl3orgzDzMC5M9JF6J6SR0qIePKEEB5HhKqQNGGRvEAzmnAaJVLISzQjTMiISPp5jW6835FAxorNkM4H71vwHmdDt3ehaYYeDxXO1njZmRo8Lk7Y9GHYu-ELSvzhoGzseMZWdgsd4I1v-hrnYPyIV4ejcYAXbT24Ztx2t-iqMq2Hu986R5uX53X2FuXvr8tskUeWUzVGlkplYmEZAUWosDZWoFJIisKQOIQsLFhlyxgKHoNJuDAVEQVXAnhJU87n6GHaG155OIIf9W44uj6c1IxxpmTKUhEoNlHWhW87qPTeNZ1xJ02JPhupJyN1sEf_GKllEPFJ5APc1-D-Vv-j-galInYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232986267</pqid></control><display><type>article</type><title>Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm</title><source>Springer Online Journals Complete</source><creator>Kumar, S. N. ; Fred, A. Lenin ; Kumar, H. Ajay ; Varghese, P. Sebastin</creator><creatorcontrib>Kumar, S. N. ; Fred, A. Lenin ; Kumar, H. Ajay ; Varghese, P. Sebastin</creatorcontrib><description>The storage and transmission of medical data such as CT/MR DICOM images are an essential part of the telemedicine application. In this paper, a prediction-based lossless compression algorithm using least square approach is proposed for the compression of CT images. Prior to compression, the preprocessing was performed by neutrosophic median filter. The gradient adjusted prediction scheme was employed for the determination of prediction coefficients, and polynomial least square fitting approach was used for optimal selection of prediction coefficients. The selected prediction coefficients are finally encoded by Huffman coder for transmission. The quality of the reconstructed image was validated by performance metrics and compared with other compression techniques like JPEG, contextual vector quantization and vector quantization using bat optimization (BAT-VQ). The proposed neutrosophic set-based least square compression algorithm was found to be efficient and tested on DICOM abdomen CT datasets. The hardware implementation was done by Raspberry Pi processor using Java platform for transferring the data through cloud network for telemedicine application.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-019-01152-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Circuits and Systems ; Coding ; Coefficients ; Computed tomography ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Image compression ; Image quality ; Image reconstruction ; Image transmission ; Instrumentation ; JPEG encoders-decoders ; Least squares ; Medical imaging ; Microprocessors ; Optimization ; Performance measurement ; Polynomials ; Signal,Image and Speech Processing ; Telemedicine ; Vector quantization</subject><ispartof>Circuits, systems, and signal processing, 2020-02, Vol.39 (2), p.522-542</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Circuits, Systems, and Signal Processing is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c189a47c20e9017cc49e96e5bba040408bcec9cd4eb34ea537af07b397e3d1633</citedby><cites>FETCH-LOGICAL-c319t-c189a47c20e9017cc49e96e5bba040408bcec9cd4eb34ea537af07b397e3d1633</cites><orcidid>0000-0002-6551-4796 ; 0000-0003-0112-6118 ; 0000-0002-2530-1454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-019-01152-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-019-01152-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, S. N.</creatorcontrib><creatorcontrib>Fred, A. Lenin</creatorcontrib><creatorcontrib>Kumar, H. Ajay</creatorcontrib><creatorcontrib>Varghese, P. Sebastin</creatorcontrib><title>Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>The storage and transmission of medical data such as CT/MR DICOM images are an essential part of the telemedicine application. In this paper, a prediction-based lossless compression algorithm using least square approach is proposed for the compression of CT images. Prior to compression, the preprocessing was performed by neutrosophic median filter. The gradient adjusted prediction scheme was employed for the determination of prediction coefficients, and polynomial least square fitting approach was used for optimal selection of prediction coefficients. The selected prediction coefficients are finally encoded by Huffman coder for transmission. The quality of the reconstructed image was validated by performance metrics and compared with other compression techniques like JPEG, contextual vector quantization and vector quantization using bat optimization (BAT-VQ). The proposed neutrosophic set-based least square compression algorithm was found to be efficient and tested on DICOM abdomen CT datasets. The hardware implementation was done by Raspberry Pi processor using Java platform for transferring the data through cloud network for telemedicine application.</description><subject>Algorithms</subject><subject>Circuits and Systems</subject><subject>Coding</subject><subject>Coefficients</subject><subject>Computed tomography</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image transmission</subject><subject>Instrumentation</subject><subject>JPEG encoders-decoders</subject><subject>Least squares</subject><subject>Medical imaging</subject><subject>Microprocessors</subject><subject>Optimization</subject><subject>Performance measurement</subject><subject>Polynomials</subject><subject>Signal,Image and Speech Processing</subject><subject>Telemedicine</subject><subject>Vector quantization</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtqwzAQRUVpoWnaH-hK0LVbPWxLWgbTR8DQQhLoTsjy2HHwI5GcQv6-Sl3orgzDzMC5M9JF6J6SR0qIePKEEB5HhKqQNGGRvEAzmnAaJVLISzQjTMiISPp5jW6835FAxorNkM4H71vwHmdDt3ehaYYeDxXO1njZmRo8Lk7Y9GHYu-ELSvzhoGzseMZWdgsd4I1v-hrnYPyIV4ejcYAXbT24Ztx2t-iqMq2Hu986R5uX53X2FuXvr8tskUeWUzVGlkplYmEZAUWosDZWoFJIisKQOIQsLFhlyxgKHoNJuDAVEQVXAnhJU87n6GHaG155OIIf9W44uj6c1IxxpmTKUhEoNlHWhW87qPTeNZ1xJ02JPhupJyN1sEf_GKllEPFJ5APc1-D-Vv-j-galInYk</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kumar, S. N.</creator><creator>Fred, A. Lenin</creator><creator>Kumar, H. Ajay</creator><creator>Varghese, P. Sebastin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6551-4796</orcidid><orcidid>https://orcid.org/0000-0003-0112-6118</orcidid><orcidid>https://orcid.org/0000-0002-2530-1454</orcidid></search><sort><creationdate>20200201</creationdate><title>Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm</title><author>Kumar, S. N. ; Fred, A. Lenin ; Kumar, H. Ajay ; Varghese, P. Sebastin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c189a47c20e9017cc49e96e5bba040408bcec9cd4eb34ea537af07b397e3d1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Circuits and Systems</topic><topic>Coding</topic><topic>Coefficients</topic><topic>Computed tomography</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image transmission</topic><topic>Instrumentation</topic><topic>JPEG encoders-decoders</topic><topic>Least squares</topic><topic>Medical imaging</topic><topic>Microprocessors</topic><topic>Optimization</topic><topic>Performance measurement</topic><topic>Polynomials</topic><topic>Signal,Image and Speech Processing</topic><topic>Telemedicine</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, S. N.</creatorcontrib><creatorcontrib>Fred, A. Lenin</creatorcontrib><creatorcontrib>Kumar, H. Ajay</creatorcontrib><creatorcontrib>Varghese, P. Sebastin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, S. N.</au><au>Fred, A. Lenin</au><au>Kumar, H. Ajay</au><au>Varghese, P. Sebastin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>39</volume><issue>2</issue><spage>522</spage><epage>542</epage><pages>522-542</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>The storage and transmission of medical data such as CT/MR DICOM images are an essential part of the telemedicine application. In this paper, a prediction-based lossless compression algorithm using least square approach is proposed for the compression of CT images. Prior to compression, the preprocessing was performed by neutrosophic median filter. The gradient adjusted prediction scheme was employed for the determination of prediction coefficients, and polynomial least square fitting approach was used for optimal selection of prediction coefficients. The selected prediction coefficients are finally encoded by Huffman coder for transmission. The quality of the reconstructed image was validated by performance metrics and compared with other compression techniques like JPEG, contextual vector quantization and vector quantization using bat optimization (BAT-VQ). The proposed neutrosophic set-based least square compression algorithm was found to be efficient and tested on DICOM abdomen CT datasets. The hardware implementation was done by Raspberry Pi processor using Java platform for transferring the data through cloud network for telemedicine application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-019-01152-8</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6551-4796</orcidid><orcidid>https://orcid.org/0000-0003-0112-6118</orcidid><orcidid>https://orcid.org/0000-0002-2530-1454</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2020-02, Vol.39 (2), p.522-542
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2232986267
source Springer Online Journals Complete
subjects Algorithms
Circuits and Systems
Coding
Coefficients
Computed tomography
Electrical Engineering
Electronics and Microelectronics
Engineering
Image compression
Image quality
Image reconstruction
Image transmission
Instrumentation
JPEG encoders-decoders
Least squares
Medical imaging
Microprocessors
Optimization
Performance measurement
Polynomials
Signal,Image and Speech Processing
Telemedicine
Vector quantization
title Lossless Compression of CT Images by an Improved Prediction Scheme Using Least Square Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lossless%20Compression%20of%20CT%20Images%20by%20an%20Improved%20Prediction%20Scheme%20Using%20Least%20Square%20Algorithm&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Kumar,%20S.%20N.&rft.date=2020-02-01&rft.volume=39&rft.issue=2&rft.spage=522&rft.epage=542&rft.pages=522-542&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-019-01152-8&rft_dat=%3Cproquest_cross%3E2232986267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232986267&rft_id=info:pmid/&rfr_iscdi=true