Geolocating Political Events in Text

This work introduces a general method for automatically finding the locations where political events in text occurred. Using a novel set of 8,000 labeled sentences, I create a method to link automatically extracted events and locations in text. The model achieves human level performance on the annot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
1. Verfasser: Halterman, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Halterman, Andrew
description This work introduces a general method for automatically finding the locations where political events in text occurred. Using a novel set of 8,000 labeled sentences, I create a method to link automatically extracted events and locations in text. The model achieves human level performance on the annotation task and outperforms previous event geolocation systems. It can be applied to most event extraction systems across geographic contexts. I formalize the event--location linking task, describe the neural network model, describe the potential uses of such a system in political science, and demonstrate a workflow to answer an open question on the role of conventional military offensives in causing civilian casualties in the Syrian civil war.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2232979337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232979337</sourcerecordid><originalsourceid>FETCH-proquest_journals_22329793373</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcU_Nz8lPTizJzEtXCMjPySzJTE7MUXAtS80rKVbIzFMISa0o4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMjYyNLc0tjY3Nj4lQBAMJILoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232979337</pqid></control><display><type>article</type><title>Geolocating Political Events in Text</title><source>Free E- Journals</source><creator>Halterman, Andrew</creator><creatorcontrib>Halterman, Andrew</creatorcontrib><description>This work introduces a general method for automatically finding the locations where political events in text occurred. Using a novel set of 8,000 labeled sentences, I create a method to link automatically extracted events and locations in text. The model achieves human level performance on the annotation task and outperforms previous event geolocation systems. It can be applied to most event extraction systems across geographic contexts. I formalize the event--location linking task, describe the neural network model, describe the potential uses of such a system in political science, and demonstrate a workflow to answer an open question on the role of conventional military offensives in causing civilian casualties in the Syrian civil war.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Casualties ; Human performance ; Neural networks ; Politics ; Workflow</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Halterman, Andrew</creatorcontrib><title>Geolocating Political Events in Text</title><title>arXiv.org</title><description>This work introduces a general method for automatically finding the locations where political events in text occurred. Using a novel set of 8,000 labeled sentences, I create a method to link automatically extracted events and locations in text. The model achieves human level performance on the annotation task and outperforms previous event geolocation systems. It can be applied to most event extraction systems across geographic contexts. I formalize the event--location linking task, describe the neural network model, describe the potential uses of such a system in political science, and demonstrate a workflow to answer an open question on the role of conventional military offensives in causing civilian casualties in the Syrian civil war.</description><subject>Annotations</subject><subject>Casualties</subject><subject>Human performance</subject><subject>Neural networks</subject><subject>Politics</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcU_Nz8lPTizJzEtXCMjPySzJTE7MUXAtS80rKVbIzFMISa0o4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMjYyNLc0tjY3Nj4lQBAMJILoU</recordid><startdate>20190529</startdate><enddate>20190529</enddate><creator>Halterman, Andrew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190529</creationdate><title>Geolocating Political Events in Text</title><author>Halterman, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22329793373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annotations</topic><topic>Casualties</topic><topic>Human performance</topic><topic>Neural networks</topic><topic>Politics</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Halterman, Andrew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halterman, Andrew</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Geolocating Political Events in Text</atitle><jtitle>arXiv.org</jtitle><date>2019-05-29</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>This work introduces a general method for automatically finding the locations where political events in text occurred. Using a novel set of 8,000 labeled sentences, I create a method to link automatically extracted events and locations in text. The model achieves human level performance on the annotation task and outperforms previous event geolocation systems. It can be applied to most event extraction systems across geographic contexts. I formalize the event--location linking task, describe the neural network model, describe the potential uses of such a system in political science, and demonstrate a workflow to answer an open question on the role of conventional military offensives in causing civilian casualties in the Syrian civil war.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2232979337
source Free E- Journals
subjects Annotations
Casualties
Human performance
Neural networks
Politics
Workflow
title Geolocating Political Events in Text
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Geolocating%20Political%20Events%20in%20Text&rft.jtitle=arXiv.org&rft.au=Halterman,%20Andrew&rft.date=2019-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2232979337%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232979337&rft_id=info:pmid/&rfr_iscdi=true