Generating Material Maps to Map Informal Settlements
Detecting and mapping informal settlements encompasses several of the United Nations sustainable development goals. This is because informal settlements are home to the most socially and economically vulnerable people on the planet. Thus, understanding where these settlements are is of paramount imp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-05 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Helber, Patrick Gram-Hansen, Bradley Varatharajan, Indhu Azam, Faiza Coca-Castro, Alejandro Kopackova, Veronika Bilinski, Piotr |
description | Detecting and mapping informal settlements encompasses several of the United Nations sustainable development goals. This is because informal settlements are home to the most socially and economically vulnerable people on the planet. Thus, understanding where these settlements are is of paramount importance to both government and non-government organizations (NGOs), such as the United Nations Children's Fund (UNICEF), who can use this information to deliver effective social and economic aid. We propose a method that detects and maps the locations of informal settlements using only freely available, Sentinel-2 low-resolution satellite spectral data and socio-economic data. This is in contrast to previous studies that only use costly very-high resolution (VHR) satellite and aerial imagery. We show how we can detect informal settlements by combining both domain knowledge and machine learning techniques, to build a classifier that looks for known roofing materials used in informal settlements. Please find additional material at https://frontierdevelopmentlab.github.io/informal-settlements/. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2232976541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232976541</sourcerecordid><originalsourceid>FETCH-proquest_journals_22329765413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcU_NSy1KLMnMS1fwTSxJLcpMzAEyCooVSvJBtIJnXlp-US5QMDi1pCQnNTc1r6SYh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijYyMjSzNzUxNDI2JUwUANs40YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232976541</pqid></control><display><type>article</type><title>Generating Material Maps to Map Informal Settlements</title><source>Free E- Journals</source><creator>Helber, Patrick ; Gram-Hansen, Bradley ; Varatharajan, Indhu ; Azam, Faiza ; Coca-Castro, Alejandro ; Kopackova, Veronika ; Bilinski, Piotr</creator><creatorcontrib>Helber, Patrick ; Gram-Hansen, Bradley ; Varatharajan, Indhu ; Azam, Faiza ; Coca-Castro, Alejandro ; Kopackova, Veronika ; Bilinski, Piotr</creatorcontrib><description>Detecting and mapping informal settlements encompasses several of the United Nations sustainable development goals. This is because informal settlements are home to the most socially and economically vulnerable people on the planet. Thus, understanding where these settlements are is of paramount importance to both government and non-government organizations (NGOs), such as the United Nations Children's Fund (UNICEF), who can use this information to deliver effective social and economic aid. We propose a method that detects and maps the locations of informal settlements using only freely available, Sentinel-2 low-resolution satellite spectral data and socio-economic data. This is in contrast to previous studies that only use costly very-high resolution (VHR) satellite and aerial imagery. We show how we can detect informal settlements by combining both domain knowledge and machine learning techniques, to build a classifier that looks for known roofing materials used in informal settlements. Please find additional material at https://frontierdevelopmentlab.github.io/informal-settlements/.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Economics ; Image detection ; Machine learning ; Mapping ; NGOs ; Nongovernmental organizations ; Residents ; Roofing ; Roofing materials ; Satellite imagery ; Sustainable development</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Helber, Patrick</creatorcontrib><creatorcontrib>Gram-Hansen, Bradley</creatorcontrib><creatorcontrib>Varatharajan, Indhu</creatorcontrib><creatorcontrib>Azam, Faiza</creatorcontrib><creatorcontrib>Coca-Castro, Alejandro</creatorcontrib><creatorcontrib>Kopackova, Veronika</creatorcontrib><creatorcontrib>Bilinski, Piotr</creatorcontrib><title>Generating Material Maps to Map Informal Settlements</title><title>arXiv.org</title><description>Detecting and mapping informal settlements encompasses several of the United Nations sustainable development goals. This is because informal settlements are home to the most socially and economically vulnerable people on the planet. Thus, understanding where these settlements are is of paramount importance to both government and non-government organizations (NGOs), such as the United Nations Children's Fund (UNICEF), who can use this information to deliver effective social and economic aid. We propose a method that detects and maps the locations of informal settlements using only freely available, Sentinel-2 low-resolution satellite spectral data and socio-economic data. This is in contrast to previous studies that only use costly very-high resolution (VHR) satellite and aerial imagery. We show how we can detect informal settlements by combining both domain knowledge and machine learning techniques, to build a classifier that looks for known roofing materials used in informal settlements. Please find additional material at https://frontierdevelopmentlab.github.io/informal-settlements/.</description><subject>Economics</subject><subject>Image detection</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>NGOs</subject><subject>Nongovernmental organizations</subject><subject>Residents</subject><subject>Roofing</subject><subject>Roofing materials</subject><subject>Satellite imagery</subject><subject>Sustainable development</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcU_NSy1KLMnMS1fwTSxJLcpMzAEyCooVSvJBtIJnXlp-US5QMDi1pCQnNTc1r6SYh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijYyMjSzNzUxNDI2JUwUANs40YA</recordid><startdate>20190530</startdate><enddate>20190530</enddate><creator>Helber, Patrick</creator><creator>Gram-Hansen, Bradley</creator><creator>Varatharajan, Indhu</creator><creator>Azam, Faiza</creator><creator>Coca-Castro, Alejandro</creator><creator>Kopackova, Veronika</creator><creator>Bilinski, Piotr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190530</creationdate><title>Generating Material Maps to Map Informal Settlements</title><author>Helber, Patrick ; Gram-Hansen, Bradley ; Varatharajan, Indhu ; Azam, Faiza ; Coca-Castro, Alejandro ; Kopackova, Veronika ; Bilinski, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22329765413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economics</topic><topic>Image detection</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>NGOs</topic><topic>Nongovernmental organizations</topic><topic>Residents</topic><topic>Roofing</topic><topic>Roofing materials</topic><topic>Satellite imagery</topic><topic>Sustainable development</topic><toplevel>online_resources</toplevel><creatorcontrib>Helber, Patrick</creatorcontrib><creatorcontrib>Gram-Hansen, Bradley</creatorcontrib><creatorcontrib>Varatharajan, Indhu</creatorcontrib><creatorcontrib>Azam, Faiza</creatorcontrib><creatorcontrib>Coca-Castro, Alejandro</creatorcontrib><creatorcontrib>Kopackova, Veronika</creatorcontrib><creatorcontrib>Bilinski, Piotr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helber, Patrick</au><au>Gram-Hansen, Bradley</au><au>Varatharajan, Indhu</au><au>Azam, Faiza</au><au>Coca-Castro, Alejandro</au><au>Kopackova, Veronika</au><au>Bilinski, Piotr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generating Material Maps to Map Informal Settlements</atitle><jtitle>arXiv.org</jtitle><date>2019-05-30</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Detecting and mapping informal settlements encompasses several of the United Nations sustainable development goals. This is because informal settlements are home to the most socially and economically vulnerable people on the planet. Thus, understanding where these settlements are is of paramount importance to both government and non-government organizations (NGOs), such as the United Nations Children's Fund (UNICEF), who can use this information to deliver effective social and economic aid. We propose a method that detects and maps the locations of informal settlements using only freely available, Sentinel-2 low-resolution satellite spectral data and socio-economic data. This is in contrast to previous studies that only use costly very-high resolution (VHR) satellite and aerial imagery. We show how we can detect informal settlements by combining both domain knowledge and machine learning techniques, to build a classifier that looks for known roofing materials used in informal settlements. Please find additional material at https://frontierdevelopmentlab.github.io/informal-settlements/.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2232976541 |
source | Free E- Journals |
subjects | Economics Image detection Machine learning Mapping NGOs Nongovernmental organizations Residents Roofing Roofing materials Satellite imagery Sustainable development |
title | Generating Material Maps to Map Informal Settlements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A15%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generating%20Material%20Maps%20to%20Map%20Informal%20Settlements&rft.jtitle=arXiv.org&rft.au=Helber,%20Patrick&rft.date=2019-05-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2232976541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232976541&rft_id=info:pmid/&rfr_iscdi=true |