Terrestrial magma ocean origin of the Moon
A conceptual framework for the origin of the Moon must explain both the chemical and the mechanical characteristics of the Earth–Moon system to be viable. The classic concept of an oblique giant impact explains the large angular momentum and the lack of a large iron-rich core to the Moon, but in thi...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2019-06, Vol.12 (6), p.418-423 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | 6 |
container_start_page | 418 |
container_title | Nature geoscience |
container_volume | 12 |
creator | Hosono, Natsuki Karato, Shun-ichiro Makino, Junichiro Saitoh, Takayuki R. |
description | A conceptual framework for the origin of the Moon must explain both the chemical and the mechanical characteristics of the Earth–Moon system to be viable. The classic concept of an oblique giant impact explains the large angular momentum and the lack of a large iron-rich core to the Moon, but in this scenario it is difficult to explain the similarity in the isotopic compositions of the Earth and Moon without violating the angular momentum constraint. Here we propose that a giant, solid impactor hit the proto-Earth while it was covered with a magma ocean, under the conventional collision conditions. We perform density-independent smoothed particle hydrodynamic collision simulations with an equation of state appropriate for molten silicates. These calculations demonstrate that, because of the large difference in shock heating between silicate melts and solids (rocks), a substantial fraction of the ejected, Moon-forming material is derived from the magma ocean, even in a highly oblique collision. We show that this model reconciles the compositional similarities and differences between the Moon and Earth while satisfying the angular momentum constraint.
Moon formation by a giant impact ejecting material from a magma ocean on Earth reconciles geochemical and dynamical constraints on its formation, according to numerical simulations. |
doi_str_mv | 10.1038/s41561-019-0354-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2232654028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232654028</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-708dc97c261633ee5569e481ad25549e90b86ba08661c2d93fe8fda2ec7e27563</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EEuHxA-hOokMyrNePs0sU8ZKCaEJtOXd74aLkHOyk4N_j6EBUVDPFzOzqY-xKwK0Aae-yEtoIDsJxkFpxPGITUWvk4MAe_3rr1Ck7y3kFYEDVesJu5pQS5V3qw7rahOUmVLGhMFQx9cu-SFftPqh6jXG4YCddWGe6_NFz9v74MJ8-89nb08v0fsaDlG7Ha7Bt4-oGjTBSEmltHCkrQotaK0cOFtYsAlhjRIOtkx3Zrg1ITU1YayPP2fW4u03xc19-86u4T0M56RElGq0AbUmJMdWkmHOizm9TvwnpywvwByR-ROILEn9A4rF0cOzkkh2WlP6W_y99A263YYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232654028</pqid></control><display><type>article</type><title>Terrestrial magma ocean origin of the Moon</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hosono, Natsuki ; Karato, Shun-ichiro ; Makino, Junichiro ; Saitoh, Takayuki R.</creator><creatorcontrib>Hosono, Natsuki ; Karato, Shun-ichiro ; Makino, Junichiro ; Saitoh, Takayuki R.</creatorcontrib><description>A conceptual framework for the origin of the Moon must explain both the chemical and the mechanical characteristics of the Earth–Moon system to be viable. The classic concept of an oblique giant impact explains the large angular momentum and the lack of a large iron-rich core to the Moon, but in this scenario it is difficult to explain the similarity in the isotopic compositions of the Earth and Moon without violating the angular momentum constraint. Here we propose that a giant, solid impactor hit the proto-Earth while it was covered with a magma ocean, under the conventional collision conditions. We perform density-independent smoothed particle hydrodynamic collision simulations with an equation of state appropriate for molten silicates. These calculations demonstrate that, because of the large difference in shock heating between silicate melts and solids (rocks), a substantial fraction of the ejected, Moon-forming material is derived from the magma ocean, even in a highly oblique collision. We show that this model reconciles the compositional similarities and differences between the Moon and Earth while satisfying the angular momentum constraint.
Moon formation by a giant impact ejecting material from a magma ocean on Earth reconciles geochemical and dynamical constraints on its formation, according to numerical simulations.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-019-0354-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/2151/209 ; 704/445/3928 ; 704/445/847 ; Angular momentum ; Computer simulation ; Earth ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Earth-Moon system ; Equations of state ; Geochemistry ; Geology ; Geophysics/Geodesy ; Heating ; Hydrodynamics ; Iron ; Isotope composition ; Lava ; Magma ; Mechanical properties ; Melts ; Momentum ; Moon ; Oceans ; Organic chemistry ; Shock heating ; Silicates</subject><ispartof>Nature geoscience, 2019-06, Vol.12 (6), p.418-423</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-708dc97c261633ee5569e481ad25549e90b86ba08661c2d93fe8fda2ec7e27563</citedby><cites>FETCH-LOGICAL-a339t-708dc97c261633ee5569e481ad25549e90b86ba08661c2d93fe8fda2ec7e27563</cites><orcidid>0000-0002-6638-7223 ; 0000-0002-1483-4589 ; 0000-0001-8226-4592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-019-0354-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-019-0354-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hosono, Natsuki</creatorcontrib><creatorcontrib>Karato, Shun-ichiro</creatorcontrib><creatorcontrib>Makino, Junichiro</creatorcontrib><creatorcontrib>Saitoh, Takayuki R.</creatorcontrib><title>Terrestrial magma ocean origin of the Moon</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>A conceptual framework for the origin of the Moon must explain both the chemical and the mechanical characteristics of the Earth–Moon system to be viable. The classic concept of an oblique giant impact explains the large angular momentum and the lack of a large iron-rich core to the Moon, but in this scenario it is difficult to explain the similarity in the isotopic compositions of the Earth and Moon without violating the angular momentum constraint. Here we propose that a giant, solid impactor hit the proto-Earth while it was covered with a magma ocean, under the conventional collision conditions. We perform density-independent smoothed particle hydrodynamic collision simulations with an equation of state appropriate for molten silicates. These calculations demonstrate that, because of the large difference in shock heating between silicate melts and solids (rocks), a substantial fraction of the ejected, Moon-forming material is derived from the magma ocean, even in a highly oblique collision. We show that this model reconciles the compositional similarities and differences between the Moon and Earth while satisfying the angular momentum constraint.
Moon formation by a giant impact ejecting material from a magma ocean on Earth reconciles geochemical and dynamical constraints on its formation, according to numerical simulations.</description><subject>704/2151/209</subject><subject>704/445/3928</subject><subject>704/445/847</subject><subject>Angular momentum</subject><subject>Computer simulation</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Earth-Moon system</subject><subject>Equations of state</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Heating</subject><subject>Hydrodynamics</subject><subject>Iron</subject><subject>Isotope composition</subject><subject>Lava</subject><subject>Magma</subject><subject>Mechanical properties</subject><subject>Melts</subject><subject>Momentum</subject><subject>Moon</subject><subject>Oceans</subject><subject>Organic chemistry</subject><subject>Shock heating</subject><subject>Silicates</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtPAzEQhC0EEuHxA-hOokMyrNePs0sU8ZKCaEJtOXd74aLkHOyk4N_j6EBUVDPFzOzqY-xKwK0Aae-yEtoIDsJxkFpxPGITUWvk4MAe_3rr1Ck7y3kFYEDVesJu5pQS5V3qw7rahOUmVLGhMFQx9cu-SFftPqh6jXG4YCddWGe6_NFz9v74MJ8-89nb08v0fsaDlG7Ha7Bt4-oGjTBSEmltHCkrQotaK0cOFtYsAlhjRIOtkx3Zrg1ITU1YayPP2fW4u03xc19-86u4T0M56RElGq0AbUmJMdWkmHOizm9TvwnpywvwByR-ROILEn9A4rF0cOzkkh2WlP6W_y99A263YYY</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hosono, Natsuki</creator><creator>Karato, Shun-ichiro</creator><creator>Makino, Junichiro</creator><creator>Saitoh, Takayuki R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6638-7223</orcidid><orcidid>https://orcid.org/0000-0002-1483-4589</orcidid><orcidid>https://orcid.org/0000-0001-8226-4592</orcidid></search><sort><creationdate>20190601</creationdate><title>Terrestrial magma ocean origin of the Moon</title><author>Hosono, Natsuki ; Karato, Shun-ichiro ; Makino, Junichiro ; Saitoh, Takayuki R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-708dc97c261633ee5569e481ad25549e90b86ba08661c2d93fe8fda2ec7e27563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/2151/209</topic><topic>704/445/3928</topic><topic>704/445/847</topic><topic>Angular momentum</topic><topic>Computer simulation</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Earth-Moon system</topic><topic>Equations of state</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Heating</topic><topic>Hydrodynamics</topic><topic>Iron</topic><topic>Isotope composition</topic><topic>Lava</topic><topic>Magma</topic><topic>Mechanical properties</topic><topic>Melts</topic><topic>Momentum</topic><topic>Moon</topic><topic>Oceans</topic><topic>Organic chemistry</topic><topic>Shock heating</topic><topic>Silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosono, Natsuki</creatorcontrib><creatorcontrib>Karato, Shun-ichiro</creatorcontrib><creatorcontrib>Makino, Junichiro</creatorcontrib><creatorcontrib>Saitoh, Takayuki R.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosono, Natsuki</au><au>Karato, Shun-ichiro</au><au>Makino, Junichiro</au><au>Saitoh, Takayuki R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terrestrial magma ocean origin of the Moon</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>12</volume><issue>6</issue><spage>418</spage><epage>423</epage><pages>418-423</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>A conceptual framework for the origin of the Moon must explain both the chemical and the mechanical characteristics of the Earth–Moon system to be viable. The classic concept of an oblique giant impact explains the large angular momentum and the lack of a large iron-rich core to the Moon, but in this scenario it is difficult to explain the similarity in the isotopic compositions of the Earth and Moon without violating the angular momentum constraint. Here we propose that a giant, solid impactor hit the proto-Earth while it was covered with a magma ocean, under the conventional collision conditions. We perform density-independent smoothed particle hydrodynamic collision simulations with an equation of state appropriate for molten silicates. These calculations demonstrate that, because of the large difference in shock heating between silicate melts and solids (rocks), a substantial fraction of the ejected, Moon-forming material is derived from the magma ocean, even in a highly oblique collision. We show that this model reconciles the compositional similarities and differences between the Moon and Earth while satisfying the angular momentum constraint.
Moon formation by a giant impact ejecting material from a magma ocean on Earth reconciles geochemical and dynamical constraints on its formation, according to numerical simulations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-019-0354-2</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6638-7223</orcidid><orcidid>https://orcid.org/0000-0002-1483-4589</orcidid><orcidid>https://orcid.org/0000-0001-8226-4592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2019-06, Vol.12 (6), p.418-423 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_proquest_journals_2232654028 |
source | SpringerLink Journals - AutoHoldings |
subjects | 704/2151/209 704/445/3928 704/445/847 Angular momentum Computer simulation Earth Earth and Environmental Science Earth Sciences Earth System Sciences Earth-Moon system Equations of state Geochemistry Geology Geophysics/Geodesy Heating Hydrodynamics Iron Isotope composition Lava Magma Mechanical properties Melts Momentum Moon Oceans Organic chemistry Shock heating Silicates |
title | Terrestrial magma ocean origin of the Moon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terrestrial%20magma%20ocean%20origin%20of%20the%20Moon&rft.jtitle=Nature%20geoscience&rft.au=Hosono,%20Natsuki&rft.date=2019-06-01&rft.volume=12&rft.issue=6&rft.spage=418&rft.epage=423&rft.pages=418-423&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-019-0354-2&rft_dat=%3Cproquest_cross%3E2232654028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232654028&rft_id=info:pmid/&rfr_iscdi=true |