Fabrication of Sub-10 nm Metal Wire Circuits using Directed Self-Assembly of Block Copolymers

A novel half-pitch (HP) 10 nm physical-epitaxial frequency multiplication process using a high chi (χ) lamellar block copolymer was developed to carry out process verification of directed self-assembly lithography on a 300 mm wafer for practical semiconductor device manufacturing. Electrically open...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Photopolymer Science and Technology 2016/06/21, Vol.29(5), pp.647-652
Hauptverfasser: Azuma, Tsukasa, Seino, Yuriko, Sato, Hironobu, Kasahara, Yusuke, Kobayashi, Katsutoshi, Kubota, Hitoshi, Kanai, Hideki, Kodera, Katsuyoshi, Kihara, Naoko, Kawamonzen, Yoshiaki, Minegishi, Shinya, Miyagi, Ken, Yamano, Hitoshi, Tobana, Toshikatsu, Shiraishi, Masayuki, Nomura, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 5
container_start_page 647
container_title Journal of Photopolymer Science and Technology
container_volume 29
creator Azuma, Tsukasa
Seino, Yuriko
Sato, Hironobu
Kasahara, Yusuke
Kobayashi, Katsutoshi
Kubota, Hitoshi
Kanai, Hideki
Kodera, Katsuyoshi
Kihara, Naoko
Kawamonzen, Yoshiaki
Minegishi, Shinya
Miyagi, Ken
Yamano, Hitoshi
Tobana, Toshikatsu
Shiraishi, Masayuki
Nomura, Satoshi
description A novel half-pitch (HP) 10 nm physical-epitaxial frequency multiplication process using a high chi (χ) lamellar block copolymer was developed to carry out process verification of directed self-assembly lithography on a 300 mm wafer for practical semiconductor device manufacturing. Electrically open and short process level-test element group (PL-TEG) yield verification of sub-10 nm metal wire circuits fabricated using the HP 10 nm physical-epitaxial frequency multiplication process was carried out on a 300 mm wafer. The electrically open and short PL-TEG yield verification revealed the viability of the HP 10 nm physical-epitaxial frequency multiplication process from the perspective of the total practical performance including critical dimension control, defect control, pattern placement error, space width roughness, space edge roughness, and process windows in the pattern transfer process.
doi_str_mv 10.2494/photopolymer.29.647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2232597705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232597705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-6ff32b2fa11229458dbc2d0237384fdb034d177f03d5a3dd6e70bb4a5f24b03e3</originalsourceid><addsrcrecordid>eNplkMtOwzAQRS0EEqXwBWwssU5x_EjqZQkUkIpYFMQKWY4fbUoSB9tZ9O9J1VIhsRpp5p6Z0QHgOkUTTDm97dYuus7V28b4CeaTjOYnYJQSypOMkOwUjBBPacIxpefgIoQNQoQwxkfgcy5LXykZK9dCZ-GyL5MUwbaBLybKGn5U3sCi8qqvYoB9qNoVvB96KhoNl6a2ySwE05T1dkff1U59weL3lXAJzqysg7k61DF4nz-8FU_J4vXxuZgtEsUIi0lmLcEltjJNMeaUTXWpsEaY5GRKrS4RoTrNc4uIZpJonZkclSWVzGI6DA0Zg5v93s67796EKDau9-1wUmBMMON5jtiQIvuU8i4Eb6zofNVIvxUpEjuP4q9HgbkYPA7UfE9tQpQrc2Skj5WqzT-GHcBjQK2lF6YlP6P5hHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232597705</pqid></control><display><type>article</type><title>Fabrication of Sub-10 nm Metal Wire Circuits using Directed Self-Assembly of Block Copolymers</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Azuma, Tsukasa ; Seino, Yuriko ; Sato, Hironobu ; Kasahara, Yusuke ; Kobayashi, Katsutoshi ; Kubota, Hitoshi ; Kanai, Hideki ; Kodera, Katsuyoshi ; Kihara, Naoko ; Kawamonzen, Yoshiaki ; Minegishi, Shinya ; Miyagi, Ken ; Yamano, Hitoshi ; Tobana, Toshikatsu ; Shiraishi, Masayuki ; Nomura, Satoshi</creator><creatorcontrib>Azuma, Tsukasa ; Seino, Yuriko ; Sato, Hironobu ; Kasahara, Yusuke ; Kobayashi, Katsutoshi ; Kubota, Hitoshi ; Kanai, Hideki ; Kodera, Katsuyoshi ; Kihara, Naoko ; Kawamonzen, Yoshiaki ; Minegishi, Shinya ; Miyagi, Ken ; Yamano, Hitoshi ; Tobana, Toshikatsu ; Shiraishi, Masayuki ; Nomura, Satoshi</creatorcontrib><description>A novel half-pitch (HP) 10 nm physical-epitaxial frequency multiplication process using a high chi (χ) lamellar block copolymer was developed to carry out process verification of directed self-assembly lithography on a 300 mm wafer for practical semiconductor device manufacturing. Electrically open and short process level-test element group (PL-TEG) yield verification of sub-10 nm metal wire circuits fabricated using the HP 10 nm physical-epitaxial frequency multiplication process was carried out on a 300 mm wafer. The electrically open and short PL-TEG yield verification revealed the viability of the HP 10 nm physical-epitaxial frequency multiplication process from the perspective of the total practical performance including critical dimension control, defect control, pattern placement error, space width roughness, space edge roughness, and process windows in the pattern transfer process.</description><identifier>ISSN: 0914-9244</identifier><identifier>EISSN: 1349-6336</identifier><identifier>DOI: 10.2494/photopolymer.29.647</identifier><language>eng</language><publisher>Hiratsuka: The Society of Photopolymer Science and Technology(SPST)</publisher><subject>block copolymer ; Block copolymers ; Circuits ; directed self-assembly ; Electric wire ; Epitaxy ; lithography ; metal wire circuit ; Multiplication ; Roughness ; Self-assembly ; sub-10 nm ; Viability ; Wire</subject><ispartof>Journal of Photopolymer Science and Technology, 2016/06/21, Vol.29(5), pp.647-652</ispartof><rights>2016 The Society of Photopolymer Science and Technology (SPST)</rights><rights>Copyright Japan Science and Technology Agency 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-6ff32b2fa11229458dbc2d0237384fdb034d177f03d5a3dd6e70bb4a5f24b03e3</citedby><cites>FETCH-LOGICAL-c535t-6ff32b2fa11229458dbc2d0237384fdb034d177f03d5a3dd6e70bb4a5f24b03e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Azuma, Tsukasa</creatorcontrib><creatorcontrib>Seino, Yuriko</creatorcontrib><creatorcontrib>Sato, Hironobu</creatorcontrib><creatorcontrib>Kasahara, Yusuke</creatorcontrib><creatorcontrib>Kobayashi, Katsutoshi</creatorcontrib><creatorcontrib>Kubota, Hitoshi</creatorcontrib><creatorcontrib>Kanai, Hideki</creatorcontrib><creatorcontrib>Kodera, Katsuyoshi</creatorcontrib><creatorcontrib>Kihara, Naoko</creatorcontrib><creatorcontrib>Kawamonzen, Yoshiaki</creatorcontrib><creatorcontrib>Minegishi, Shinya</creatorcontrib><creatorcontrib>Miyagi, Ken</creatorcontrib><creatorcontrib>Yamano, Hitoshi</creatorcontrib><creatorcontrib>Tobana, Toshikatsu</creatorcontrib><creatorcontrib>Shiraishi, Masayuki</creatorcontrib><creatorcontrib>Nomura, Satoshi</creatorcontrib><title>Fabrication of Sub-10 nm Metal Wire Circuits using Directed Self-Assembly of Block Copolymers</title><title>Journal of Photopolymer Science and Technology</title><addtitle>J. Photopol. Sci. Technol.</addtitle><description>A novel half-pitch (HP) 10 nm physical-epitaxial frequency multiplication process using a high chi (χ) lamellar block copolymer was developed to carry out process verification of directed self-assembly lithography on a 300 mm wafer for practical semiconductor device manufacturing. Electrically open and short process level-test element group (PL-TEG) yield verification of sub-10 nm metal wire circuits fabricated using the HP 10 nm physical-epitaxial frequency multiplication process was carried out on a 300 mm wafer. The electrically open and short PL-TEG yield verification revealed the viability of the HP 10 nm physical-epitaxial frequency multiplication process from the perspective of the total practical performance including critical dimension control, defect control, pattern placement error, space width roughness, space edge roughness, and process windows in the pattern transfer process.</description><subject>block copolymer</subject><subject>Block copolymers</subject><subject>Circuits</subject><subject>directed self-assembly</subject><subject>Electric wire</subject><subject>Epitaxy</subject><subject>lithography</subject><subject>metal wire circuit</subject><subject>Multiplication</subject><subject>Roughness</subject><subject>Self-assembly</subject><subject>sub-10 nm</subject><subject>Viability</subject><subject>Wire</subject><issn>0914-9244</issn><issn>1349-6336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNplkMtOwzAQRS0EEqXwBWwssU5x_EjqZQkUkIpYFMQKWY4fbUoSB9tZ9O9J1VIhsRpp5p6Z0QHgOkUTTDm97dYuus7V28b4CeaTjOYnYJQSypOMkOwUjBBPacIxpefgIoQNQoQwxkfgcy5LXykZK9dCZ-GyL5MUwbaBLybKGn5U3sCi8qqvYoB9qNoVvB96KhoNl6a2ySwE05T1dkff1U59weL3lXAJzqysg7k61DF4nz-8FU_J4vXxuZgtEsUIi0lmLcEltjJNMeaUTXWpsEaY5GRKrS4RoTrNc4uIZpJonZkclSWVzGI6DA0Zg5v93s67796EKDau9-1wUmBMMON5jtiQIvuU8i4Eb6zofNVIvxUpEjuP4q9HgbkYPA7UfE9tQpQrc2Skj5WqzT-GHcBjQK2lF6YlP6P5hHI</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Azuma, Tsukasa</creator><creator>Seino, Yuriko</creator><creator>Sato, Hironobu</creator><creator>Kasahara, Yusuke</creator><creator>Kobayashi, Katsutoshi</creator><creator>Kubota, Hitoshi</creator><creator>Kanai, Hideki</creator><creator>Kodera, Katsuyoshi</creator><creator>Kihara, Naoko</creator><creator>Kawamonzen, Yoshiaki</creator><creator>Minegishi, Shinya</creator><creator>Miyagi, Ken</creator><creator>Yamano, Hitoshi</creator><creator>Tobana, Toshikatsu</creator><creator>Shiraishi, Masayuki</creator><creator>Nomura, Satoshi</creator><general>The Society of Photopolymer Science and Technology(SPST)</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Fabrication of Sub-10 nm Metal Wire Circuits using Directed Self-Assembly of Block Copolymers</title><author>Azuma, Tsukasa ; Seino, Yuriko ; Sato, Hironobu ; Kasahara, Yusuke ; Kobayashi, Katsutoshi ; Kubota, Hitoshi ; Kanai, Hideki ; Kodera, Katsuyoshi ; Kihara, Naoko ; Kawamonzen, Yoshiaki ; Minegishi, Shinya ; Miyagi, Ken ; Yamano, Hitoshi ; Tobana, Toshikatsu ; Shiraishi, Masayuki ; Nomura, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-6ff32b2fa11229458dbc2d0237384fdb034d177f03d5a3dd6e70bb4a5f24b03e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>block copolymer</topic><topic>Block copolymers</topic><topic>Circuits</topic><topic>directed self-assembly</topic><topic>Electric wire</topic><topic>Epitaxy</topic><topic>lithography</topic><topic>metal wire circuit</topic><topic>Multiplication</topic><topic>Roughness</topic><topic>Self-assembly</topic><topic>sub-10 nm</topic><topic>Viability</topic><topic>Wire</topic><toplevel>online_resources</toplevel><creatorcontrib>Azuma, Tsukasa</creatorcontrib><creatorcontrib>Seino, Yuriko</creatorcontrib><creatorcontrib>Sato, Hironobu</creatorcontrib><creatorcontrib>Kasahara, Yusuke</creatorcontrib><creatorcontrib>Kobayashi, Katsutoshi</creatorcontrib><creatorcontrib>Kubota, Hitoshi</creatorcontrib><creatorcontrib>Kanai, Hideki</creatorcontrib><creatorcontrib>Kodera, Katsuyoshi</creatorcontrib><creatorcontrib>Kihara, Naoko</creatorcontrib><creatorcontrib>Kawamonzen, Yoshiaki</creatorcontrib><creatorcontrib>Minegishi, Shinya</creatorcontrib><creatorcontrib>Miyagi, Ken</creatorcontrib><creatorcontrib>Yamano, Hitoshi</creatorcontrib><creatorcontrib>Tobana, Toshikatsu</creatorcontrib><creatorcontrib>Shiraishi, Masayuki</creatorcontrib><creatorcontrib>Nomura, Satoshi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Photopolymer Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azuma, Tsukasa</au><au>Seino, Yuriko</au><au>Sato, Hironobu</au><au>Kasahara, Yusuke</au><au>Kobayashi, Katsutoshi</au><au>Kubota, Hitoshi</au><au>Kanai, Hideki</au><au>Kodera, Katsuyoshi</au><au>Kihara, Naoko</au><au>Kawamonzen, Yoshiaki</au><au>Minegishi, Shinya</au><au>Miyagi, Ken</au><au>Yamano, Hitoshi</au><au>Tobana, Toshikatsu</au><au>Shiraishi, Masayuki</au><au>Nomura, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Sub-10 nm Metal Wire Circuits using Directed Self-Assembly of Block Copolymers</atitle><jtitle>Journal of Photopolymer Science and Technology</jtitle><addtitle>J. Photopol. Sci. Technol.</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>29</volume><issue>5</issue><spage>647</spage><epage>652</epage><pages>647-652</pages><issn>0914-9244</issn><eissn>1349-6336</eissn><abstract>A novel half-pitch (HP) 10 nm physical-epitaxial frequency multiplication process using a high chi (χ) lamellar block copolymer was developed to carry out process verification of directed self-assembly lithography on a 300 mm wafer for practical semiconductor device manufacturing. Electrically open and short process level-test element group (PL-TEG) yield verification of sub-10 nm metal wire circuits fabricated using the HP 10 nm physical-epitaxial frequency multiplication process was carried out on a 300 mm wafer. The electrically open and short PL-TEG yield verification revealed the viability of the HP 10 nm physical-epitaxial frequency multiplication process from the perspective of the total practical performance including critical dimension control, defect control, pattern placement error, space width roughness, space edge roughness, and process windows in the pattern transfer process.</abstract><cop>Hiratsuka</cop><pub>The Society of Photopolymer Science and Technology(SPST)</pub><doi>10.2494/photopolymer.29.647</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-9244
ispartof Journal of Photopolymer Science and Technology, 2016/06/21, Vol.29(5), pp.647-652
issn 0914-9244
1349-6336
language eng
recordid cdi_proquest_journals_2232597705
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects block copolymer
Block copolymers
Circuits
directed self-assembly
Electric wire
Epitaxy
lithography
metal wire circuit
Multiplication
Roughness
Self-assembly
sub-10 nm
Viability
Wire
title Fabrication of Sub-10 nm Metal Wire Circuits using Directed Self-Assembly of Block Copolymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Sub-10%20nm%20Metal%20Wire%20Circuits%20using%20Directed%20Self-Assembly%20of%20Block%20Copolymers&rft.jtitle=Journal%20of%20Photopolymer%20Science%20and%20Technology&rft.au=Azuma,%20Tsukasa&rft.date=2016-01-01&rft.volume=29&rft.issue=5&rft.spage=647&rft.epage=652&rft.pages=647-652&rft.issn=0914-9244&rft.eissn=1349-6336&rft_id=info:doi/10.2494/photopolymer.29.647&rft_dat=%3Cproquest_cross%3E2232597705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232597705&rft_id=info:pmid/&rfr_iscdi=true