Analysis of heat transfer in latent heat thermal energy storage using a flexible PCM container

Latent heat thermal energy storage (LHTES) affords superior thermal energy capacity and compactness but has limited applications due to the low thermal conductivity of phase change materials (PCMs). Several researches have focused on the improvement of heat transfer and reducing the total melting ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2019-06, Vol.55 (6), p.1571-1581
Hauptverfasser: Park, Jinsoo, Shin, Dong Ho, Shin, Youhwan, Karng, Sarng Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1581
container_issue 6
container_start_page 1571
container_title Heat and mass transfer
container_volume 55
creator Park, Jinsoo
Shin, Dong Ho
Shin, Youhwan
Karng, Sarng Woo
description Latent heat thermal energy storage (LHTES) affords superior thermal energy capacity and compactness but has limited applications due to the low thermal conductivity of phase change materials (PCMs). Several researches have focused on the improvement of heat transfer and reducing the total melting time of PCMs in LHTES system. Few researches, however, have used flexible PCM containers for this purpose. This study used a flexible elliptical container as a PCM container for improving LHTES heat transfer performance. The effects of the axis ratio (AR) and temperature difference on the thermal charging performance were numerically studied within a single container. Smaller AR values improved the heat transfer performance by promoting heat conduction and natural convection inside the containers. The enhancement rate was increased by 1.1–2.7 times for an AR range of 0.05–0.20 compared to a classic circular container (AR = 1). In addition, the elliptical container showed superior in terms of energy density reduction. Therefore, the elliptical container with optimum AR range (0.05–0.20) can be considered a suitable configuration for effective heat transfer enhancement of PCM containers.
doi_str_mv 10.1007/s00231-018-02534-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2232517785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232517785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4a8739b84a1ccc9e9e5ef8db37c686d226c35645fa1583293bdf9ead09695203</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdTTPmWRZii-o6KJrQ2bmpp0yzdQkBfvvnToFd64uHL5z4H4I3TJ6zygtHxKlXDBCmSaUKyGJOkMTJgUnjGl2jibUyJKUkrFLdJXSZsALycUEfc6C6w6pTbj3eA0u4xxdSB4ibgPuXIaQT_ka4tZ1GALE1QGn3Ee3ArxPbVhhh30H323VAf6Yv-G6D9m1A3iNLrzrEtyc7hQtnx6X8xeyeH9-nc8WpBaqyEQ6XQpTaelYXdcGDCjwuqlEWRe6aDgvjpxU3jGlBTeiarwB11BTGMWpmKK7cXYX-689pGw3_T4OnyXLueCKlaVWA8VHqo59ShG83cV26-LBMmqPGu2o0Q4a7a9GeyyJsZQGOKwg_k3_0_oBox51Tg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232517785</pqid></control><display><type>article</type><title>Analysis of heat transfer in latent heat thermal energy storage using a flexible PCM container</title><source>SpringerLink Journals - AutoHoldings</source><creator>Park, Jinsoo ; Shin, Dong Ho ; Shin, Youhwan ; Karng, Sarng Woo</creator><creatorcontrib>Park, Jinsoo ; Shin, Dong Ho ; Shin, Youhwan ; Karng, Sarng Woo</creatorcontrib><description>Latent heat thermal energy storage (LHTES) affords superior thermal energy capacity and compactness but has limited applications due to the low thermal conductivity of phase change materials (PCMs). Several researches have focused on the improvement of heat transfer and reducing the total melting time of PCMs in LHTES system. Few researches, however, have used flexible PCM containers for this purpose. This study used a flexible elliptical container as a PCM container for improving LHTES heat transfer performance. The effects of the axis ratio (AR) and temperature difference on the thermal charging performance were numerically studied within a single container. Smaller AR values improved the heat transfer performance by promoting heat conduction and natural convection inside the containers. The enhancement rate was increased by 1.1–2.7 times for an AR range of 0.05–0.20 compared to a classic circular container (AR = 1). In addition, the elliptical container showed superior in terms of energy density reduction. Therefore, the elliptical container with optimum AR range (0.05–0.20) can be considered a suitable configuration for effective heat transfer enhancement of PCM containers.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-018-02534-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Conduction heating ; Conductive heat transfer ; Containers ; Energy storage ; Engineering ; Engineering Thermodynamics ; Flux density ; Free convection ; Heat and Mass Transfer ; Heat transfer ; Industrial Chemistry/Chemical Engineering ; Latent heat ; Original ; Phase change materials ; Temperature gradients ; Thermal conductivity ; Thermal energy ; Thermodynamics</subject><ispartof>Heat and mass transfer, 2019-06, Vol.55 (6), p.1571-1581</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4a8739b84a1ccc9e9e5ef8db37c686d226c35645fa1583293bdf9ead09695203</citedby><cites>FETCH-LOGICAL-c356t-4a8739b84a1ccc9e9e5ef8db37c686d226c35645fa1583293bdf9ead09695203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-018-02534-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-018-02534-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Park, Jinsoo</creatorcontrib><creatorcontrib>Shin, Dong Ho</creatorcontrib><creatorcontrib>Shin, Youhwan</creatorcontrib><creatorcontrib>Karng, Sarng Woo</creatorcontrib><title>Analysis of heat transfer in latent heat thermal energy storage using a flexible PCM container</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>Latent heat thermal energy storage (LHTES) affords superior thermal energy capacity and compactness but has limited applications due to the low thermal conductivity of phase change materials (PCMs). Several researches have focused on the improvement of heat transfer and reducing the total melting time of PCMs in LHTES system. Few researches, however, have used flexible PCM containers for this purpose. This study used a flexible elliptical container as a PCM container for improving LHTES heat transfer performance. The effects of the axis ratio (AR) and temperature difference on the thermal charging performance were numerically studied within a single container. Smaller AR values improved the heat transfer performance by promoting heat conduction and natural convection inside the containers. The enhancement rate was increased by 1.1–2.7 times for an AR range of 0.05–0.20 compared to a classic circular container (AR = 1). In addition, the elliptical container showed superior in terms of energy density reduction. Therefore, the elliptical container with optimum AR range (0.05–0.20) can be considered a suitable configuration for effective heat transfer enhancement of PCM containers.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Containers</subject><subject>Energy storage</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Flux density</subject><subject>Free convection</subject><subject>Heat and Mass Transfer</subject><subject>Heat transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Latent heat</subject><subject>Original</subject><subject>Phase change materials</subject><subject>Temperature gradients</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermodynamics</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdTTPmWRZii-o6KJrQ2bmpp0yzdQkBfvvnToFd64uHL5z4H4I3TJ6zygtHxKlXDBCmSaUKyGJOkMTJgUnjGl2jibUyJKUkrFLdJXSZsALycUEfc6C6w6pTbj3eA0u4xxdSB4ibgPuXIaQT_ka4tZ1GALE1QGn3Ee3ArxPbVhhh30H323VAf6Yv-G6D9m1A3iNLrzrEtyc7hQtnx6X8xeyeH9-nc8WpBaqyEQ6XQpTaelYXdcGDCjwuqlEWRe6aDgvjpxU3jGlBTeiarwB11BTGMWpmKK7cXYX-689pGw3_T4OnyXLueCKlaVWA8VHqo59ShG83cV26-LBMmqPGu2o0Q4a7a9GeyyJsZQGOKwg_k3_0_oBox51Tg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Park, Jinsoo</creator><creator>Shin, Dong Ho</creator><creator>Shin, Youhwan</creator><creator>Karng, Sarng Woo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Analysis of heat transfer in latent heat thermal energy storage using a flexible PCM container</title><author>Park, Jinsoo ; Shin, Dong Ho ; Shin, Youhwan ; Karng, Sarng Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4a8739b84a1ccc9e9e5ef8db37c686d226c35645fa1583293bdf9ead09695203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Containers</topic><topic>Energy storage</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Flux density</topic><topic>Free convection</topic><topic>Heat and Mass Transfer</topic><topic>Heat transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Latent heat</topic><topic>Original</topic><topic>Phase change materials</topic><topic>Temperature gradients</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jinsoo</creatorcontrib><creatorcontrib>Shin, Dong Ho</creatorcontrib><creatorcontrib>Shin, Youhwan</creatorcontrib><creatorcontrib>Karng, Sarng Woo</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jinsoo</au><au>Shin, Dong Ho</au><au>Shin, Youhwan</au><au>Karng, Sarng Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of heat transfer in latent heat thermal energy storage using a flexible PCM container</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>55</volume><issue>6</issue><spage>1571</spage><epage>1581</epage><pages>1571-1581</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>Latent heat thermal energy storage (LHTES) affords superior thermal energy capacity and compactness but has limited applications due to the low thermal conductivity of phase change materials (PCMs). Several researches have focused on the improvement of heat transfer and reducing the total melting time of PCMs in LHTES system. Few researches, however, have used flexible PCM containers for this purpose. This study used a flexible elliptical container as a PCM container for improving LHTES heat transfer performance. The effects of the axis ratio (AR) and temperature difference on the thermal charging performance were numerically studied within a single container. Smaller AR values improved the heat transfer performance by promoting heat conduction and natural convection inside the containers. The enhancement rate was increased by 1.1–2.7 times for an AR range of 0.05–0.20 compared to a classic circular container (AR = 1). In addition, the elliptical container showed superior in terms of energy density reduction. Therefore, the elliptical container with optimum AR range (0.05–0.20) can be considered a suitable configuration for effective heat transfer enhancement of PCM containers.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-018-02534-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2019-06, Vol.55 (6), p.1571-1581
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_2232517785
source SpringerLink Journals - AutoHoldings
subjects Conduction heating
Conductive heat transfer
Containers
Energy storage
Engineering
Engineering Thermodynamics
Flux density
Free convection
Heat and Mass Transfer
Heat transfer
Industrial Chemistry/Chemical Engineering
Latent heat
Original
Phase change materials
Temperature gradients
Thermal conductivity
Thermal energy
Thermodynamics
title Analysis of heat transfer in latent heat thermal energy storage using a flexible PCM container
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20heat%20transfer%20in%20latent%20heat%20thermal%20energy%20storage%20using%20a%20flexible%20PCM%20container&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Park,%20Jinsoo&rft.date=2019-06-01&rft.volume=55&rft.issue=6&rft.spage=1571&rft.epage=1581&rft.pages=1571-1581&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-018-02534-5&rft_dat=%3Cproquest_cross%3E2232517785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232517785&rft_id=info:pmid/&rfr_iscdi=true