Sequential Edge Clustering in Temporal Multigraphs

Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-10
Hauptverfasser: Ghalebi, Elahe, Hamidreza Mahyar, Grosu, Radu, Taylor, Graham W, Williamson, Sinead A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ghalebi, Elahe
Hamidreza Mahyar
Grosu, Radu
Taylor, Graham W
Williamson, Sinead A
description Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2232267571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232267571</sourcerecordid><originalsourceid>FETCH-proquest_journals_22322675713</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk4tLE3NK8lMzFFwTUlPVXDOKS0uSS3KzEtXyMxTCEnNLcgvAsr5luaUZKYXJRZkFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqJ8oFnFJfFZ-aVFeUCpeCMjYyOgVabmhsbEqQIA7hQz_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232267571</pqid></control><display><type>article</type><title>Sequential Edge Clustering in Temporal Multigraphs</title><source>Free E- Journals</source><creator>Ghalebi, Elahe ; Hamidreza Mahyar ; Grosu, Radu ; Taylor, Graham W ; Williamson, Sinead A</creator><creatorcontrib>Ghalebi, Elahe ; Hamidreza Mahyar ; Grosu, Radu ; Taylor, Graham W ; Williamson, Sinead A</creatorcontrib><description>Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Graphs ; Performance prediction ; Recording</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ghalebi, Elahe</creatorcontrib><creatorcontrib>Hamidreza Mahyar</creatorcontrib><creatorcontrib>Grosu, Radu</creatorcontrib><creatorcontrib>Taylor, Graham W</creatorcontrib><creatorcontrib>Williamson, Sinead A</creatorcontrib><title>Sequential Edge Clustering in Temporal Multigraphs</title><title>arXiv.org</title><description>Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.</description><subject>Clustering</subject><subject>Graphs</subject><subject>Performance prediction</subject><subject>Recording</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk4tLE3NK8lMzFFwTUlPVXDOKS0uSS3KzEtXyMxTCEnNLcgvAsr5luaUZKYXJRZkFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqJ8oFnFJfFZ-aVFeUCpeCMjYyOgVabmhsbEqQIA7hQz_A</recordid><startdate>20191013</startdate><enddate>20191013</enddate><creator>Ghalebi, Elahe</creator><creator>Hamidreza Mahyar</creator><creator>Grosu, Radu</creator><creator>Taylor, Graham W</creator><creator>Williamson, Sinead A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191013</creationdate><title>Sequential Edge Clustering in Temporal Multigraphs</title><author>Ghalebi, Elahe ; Hamidreza Mahyar ; Grosu, Radu ; Taylor, Graham W ; Williamson, Sinead A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22322675713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clustering</topic><topic>Graphs</topic><topic>Performance prediction</topic><topic>Recording</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghalebi, Elahe</creatorcontrib><creatorcontrib>Hamidreza Mahyar</creatorcontrib><creatorcontrib>Grosu, Radu</creatorcontrib><creatorcontrib>Taylor, Graham W</creatorcontrib><creatorcontrib>Williamson, Sinead A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghalebi, Elahe</au><au>Hamidreza Mahyar</au><au>Grosu, Radu</au><au>Taylor, Graham W</au><au>Williamson, Sinead A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sequential Edge Clustering in Temporal Multigraphs</atitle><jtitle>arXiv.org</jtitle><date>2019-10-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2232267571
source Free E- Journals
subjects Clustering
Graphs
Performance prediction
Recording
title Sequential Edge Clustering in Temporal Multigraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sequential%20Edge%20Clustering%20in%20Temporal%20Multigraphs&rft.jtitle=arXiv.org&rft.au=Ghalebi,%20Elahe&rft.date=2019-10-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2232267571%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232267571&rft_id=info:pmid/&rfr_iscdi=true