Sequential Edge Clustering in Temporal Multigraphs
Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ghalebi, Elahe Hamidreza Mahyar Grosu, Radu Taylor, Graham W Williamson, Sinead A |
description | Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2232267571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232267571</sourcerecordid><originalsourceid>FETCH-proquest_journals_22322675713</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk4tLE3NK8lMzFFwTUlPVXDOKS0uSS3KzEtXyMxTCEnNLcgvAsr5luaUZKYXJRZkFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqJ8oFnFJfFZ-aVFeUCpeCMjYyOgVabmhsbEqQIA7hQz_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232267571</pqid></control><display><type>article</type><title>Sequential Edge Clustering in Temporal Multigraphs</title><source>Free E- Journals</source><creator>Ghalebi, Elahe ; Hamidreza Mahyar ; Grosu, Radu ; Taylor, Graham W ; Williamson, Sinead A</creator><creatorcontrib>Ghalebi, Elahe ; Hamidreza Mahyar ; Grosu, Radu ; Taylor, Graham W ; Williamson, Sinead A</creatorcontrib><description>Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Graphs ; Performance prediction ; Recording</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ghalebi, Elahe</creatorcontrib><creatorcontrib>Hamidreza Mahyar</creatorcontrib><creatorcontrib>Grosu, Radu</creatorcontrib><creatorcontrib>Taylor, Graham W</creatorcontrib><creatorcontrib>Williamson, Sinead A</creatorcontrib><title>Sequential Edge Clustering in Temporal Multigraphs</title><title>arXiv.org</title><description>Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.</description><subject>Clustering</subject><subject>Graphs</subject><subject>Performance prediction</subject><subject>Recording</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCk4tLE3NK8lMzFFwTUlPVXDOKS0uSS3KzEtXyMxTCEnNLcgvAsr5luaUZKYXJRZkFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqJ8oFnFJfFZ-aVFeUCpeCMjYyOgVabmhsbEqQIA7hQz_A</recordid><startdate>20191013</startdate><enddate>20191013</enddate><creator>Ghalebi, Elahe</creator><creator>Hamidreza Mahyar</creator><creator>Grosu, Radu</creator><creator>Taylor, Graham W</creator><creator>Williamson, Sinead A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191013</creationdate><title>Sequential Edge Clustering in Temporal Multigraphs</title><author>Ghalebi, Elahe ; Hamidreza Mahyar ; Grosu, Radu ; Taylor, Graham W ; Williamson, Sinead A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22322675713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clustering</topic><topic>Graphs</topic><topic>Performance prediction</topic><topic>Recording</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghalebi, Elahe</creatorcontrib><creatorcontrib>Hamidreza Mahyar</creatorcontrib><creatorcontrib>Grosu, Radu</creatorcontrib><creatorcontrib>Taylor, Graham W</creatorcontrib><creatorcontrib>Williamson, Sinead A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghalebi, Elahe</au><au>Hamidreza Mahyar</au><au>Grosu, Radu</au><au>Taylor, Graham W</au><au>Williamson, Sinead A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sequential Edge Clustering in Temporal Multigraphs</atitle><jtitle>arXiv.org</jtitle><date>2019-10-13</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2232267571 |
source | Free E- Journals |
subjects | Clustering Graphs Performance prediction Recording |
title | Sequential Edge Clustering in Temporal Multigraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sequential%20Edge%20Clustering%20in%20Temporal%20Multigraphs&rft.jtitle=arXiv.org&rft.au=Ghalebi,%20Elahe&rft.date=2019-10-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2232267571%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232267571&rft_id=info:pmid/&rfr_iscdi=true |