Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?

Based on differential privacy (DP) framework, we introduce and unify privacy definitions for the multi-armed bandit algorithms. We represent the framework with a unified graphical model and use it to connect privacy definitions. We derive and contrast lower bounds on the regret of bandit algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-06
Hauptverfasser: Basu, Debabrota, Dimitrakakis, Christos, Tossou, Aristide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Basu, Debabrota
Dimitrakakis, Christos
Tossou, Aristide
description Based on differential privacy (DP) framework, we introduce and unify privacy definitions for the multi-armed bandit algorithms. We represent the framework with a unified graphical model and use it to connect privacy definitions. We derive and contrast lower bounds on the regret of bandit algorithms satisfying these definitions. We leverage a unified proving technique to achieve all the lower bounds. We show that for all of them, the learner's regret is increased by a multiplicative factor dependent on the privacy level \(\epsilon\). We observe that the dependency is weaker when we do not require local differential privacy for the rewards.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2232264926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232264926</sourcerecordid><originalsourceid>FETCH-proquest_journals_22322649263</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwc8lMS0stSs0ryUzMUQgoyixLTK5USMsvUvAtzSnJ1E0syk1NUXBKzEvJLCm2UgjPSCxR8CxW8CxRAAohcYsVnPOLS-x5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMjYyMjMxNLIzJg4VQATUjxp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232264926</pqid></control><display><type>article</type><title>Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?</title><source>Free E- Journals</source><creator>Basu, Debabrota ; Dimitrakakis, Christos ; Tossou, Aristide</creator><creatorcontrib>Basu, Debabrota ; Dimitrakakis, Christos ; Tossou, Aristide</creatorcontrib><description>Based on differential privacy (DP) framework, we introduce and unify privacy definitions for the multi-armed bandit algorithms. We represent the framework with a unified graphical model and use it to connect privacy definitions. We derive and contrast lower bounds on the regret of bandit algorithms satisfying these definitions. We leverage a unified proving technique to achieve all the lower bounds. We show that for all of them, the learner's regret is increased by a multiplicative factor dependent on the privacy level \(\epsilon\). We observe that the dependency is weaker when we do not require local differential privacy for the rewards.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Dependence ; Graphical representations ; Lower bounds ; Multi-armed bandit problems ; Privacy</subject><ispartof>arXiv.org, 2020-06</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Basu, Debabrota</creatorcontrib><creatorcontrib>Dimitrakakis, Christos</creatorcontrib><creatorcontrib>Tossou, Aristide</creatorcontrib><title>Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?</title><title>arXiv.org</title><description>Based on differential privacy (DP) framework, we introduce and unify privacy definitions for the multi-armed bandit algorithms. We represent the framework with a unified graphical model and use it to connect privacy definitions. We derive and contrast lower bounds on the regret of bandit algorithms satisfying these definitions. We leverage a unified proving technique to achieve all the lower bounds. We show that for all of them, the learner's regret is increased by a multiplicative factor dependent on the privacy level \(\epsilon\). We observe that the dependency is weaker when we do not require local differential privacy for the rewards.</description><subject>Algorithms</subject><subject>Dependence</subject><subject>Graphical representations</subject><subject>Lower bounds</subject><subject>Multi-armed bandit problems</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwc8lMS0stSs0ryUzMUQgoyixLTK5USMsvUvAtzSnJ1E0syk1NUXBKzEvJLCm2UgjPSCxR8CxW8CxRAAohcYsVnPOLS-x5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMjYyMjMxNLIzJg4VQATUjxp</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Basu, Debabrota</creator><creator>Dimitrakakis, Christos</creator><creator>Tossou, Aristide</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200623</creationdate><title>Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?</title><author>Basu, Debabrota ; Dimitrakakis, Christos ; Tossou, Aristide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22322649263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Dependence</topic><topic>Graphical representations</topic><topic>Lower bounds</topic><topic>Multi-armed bandit problems</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Basu, Debabrota</creatorcontrib><creatorcontrib>Dimitrakakis, Christos</creatorcontrib><creatorcontrib>Tossou, Aristide</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basu, Debabrota</au><au>Dimitrakakis, Christos</au><au>Tossou, Aristide</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?</atitle><jtitle>arXiv.org</jtitle><date>2020-06-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Based on differential privacy (DP) framework, we introduce and unify privacy definitions for the multi-armed bandit algorithms. We represent the framework with a unified graphical model and use it to connect privacy definitions. We derive and contrast lower bounds on the regret of bandit algorithms satisfying these definitions. We leverage a unified proving technique to achieve all the lower bounds. We show that for all of them, the learner's regret is increased by a multiplicative factor dependent on the privacy level \(\epsilon\). We observe that the dependency is weaker when we do not require local differential privacy for the rewards.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2232264926
source Free E- Journals
subjects Algorithms
Dependence
Graphical representations
Lower bounds
Multi-armed bandit problems
Privacy
title Differential Privacy for Multi-armed Bandits: What Is It and What Is Its Cost?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Differential%20Privacy%20for%20Multi-armed%20Bandits:%20What%20Is%20It%20and%20What%20Is%20Its%20Cost?&rft.jtitle=arXiv.org&rft.au=Basu,%20Debabrota&rft.date=2020-06-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2232264926%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232264926&rft_id=info:pmid/&rfr_iscdi=true