Lotka-Volterra Systems with Periodic Orbits

Lotka-Volterra systems associated with skew-symmetric interaction between species are studied. We pick up some form of this model provided with conserved quantities, which makes all the solutions to be periodic-in-time except for the equilibrium. This class is explicitly given by a set of algebraic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Funkcialaj Ekvacioj 2019, Vol.62(1), pp.129-155
Hauptverfasser: Kobayashi, Manami, Suzuki, Takashi, Yamada, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 129
container_title Funkcialaj Ekvacioj
container_volume 62
creator Kobayashi, Manami
Suzuki, Takashi
Yamada, Yoshio
description Lotka-Volterra systems associated with skew-symmetric interaction between species are studied. We pick up some form of this model provided with conserved quantities, which makes all the solutions to be periodic-in-time except for the equilibrium. This class is explicitly given by a set of algebraic conditions on coefficients. If the system takes N components, we have 2N-3 and 2N-1 degrees of freedom without and with linear terms, respectively.
doi_str_mv 10.1619/fesi.62.129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2232142651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232142651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-fc6ed5f188afdb15a03fe43ac3d60bdecfa97c209406c5c006103168bd5206023</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAcFKzVk39gwWPZOpk02d2LIEWrUKjgxzVksxOb2nZrkiL9925pqac5zPPOwMvYDYchV7y6cxT9UOGQY3XGeiAF5mWB_IJdxrgAECgBe2wwbdO3yT_bZaIQTPa2i4lWMfv1aZ69UvBt4202C7VP8YqdO7OMdH2cffbx9Pg-fs6ns8nL-GGaW1EUKXdWUSMdL0vjmppLA8LRSBgrGgV1Q9aZqrAI1QiUlRZAcRBclXUjERSg6LPbw91NaH-2FJNetNuw7l5qRIF8hEryTg0OyoY2xkBOb4JfmbDTHPS-Ab1vQCvUXQOdvj_oRUzmi07WhOTtkv7tMXBa2LkJmtbiDzxaZqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232142651</pqid></control><display><type>article</type><title>Lotka-Volterra Systems with Periodic Orbits</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kobayashi, Manami ; Suzuki, Takashi ; Yamada, Yoshio</creator><creatorcontrib>Kobayashi, Manami ; Suzuki, Takashi ; Yamada, Yoshio</creatorcontrib><description>Lotka-Volterra systems associated with skew-symmetric interaction between species are studied. We pick up some form of this model provided with conserved quantities, which makes all the solutions to be periodic-in-time except for the equilibrium. This class is explicitly given by a set of algebraic conditions on coefficients. If the system takes N components, we have 2N-3 and 2N-1 degrees of freedom without and with linear terms, respectively.</description><identifier>ISSN: 0532-8721</identifier><identifier>DOI: 10.1619/fesi.62.129</identifier><language>eng</language><publisher>Tokyo: Division of Functional Equations, The Mathematical Society of Japan</publisher><subject>Dynamical systems ; Lotka-Volterra system ; Orbits ; Periodic-in-time solution</subject><ispartof>Funkcialaj Ekvacioj, 2019, Vol.62(1), pp.129-155</ispartof><rights>2019 by the Division of Functional Equations, The Mathematical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-fc6ed5f188afdb15a03fe43ac3d60bdecfa97c209406c5c006103168bd5206023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kobayashi, Manami</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><creatorcontrib>Yamada, Yoshio</creatorcontrib><title>Lotka-Volterra Systems with Periodic Orbits</title><title>Funkcialaj Ekvacioj</title><addtitle>FE</addtitle><description>Lotka-Volterra systems associated with skew-symmetric interaction between species are studied. We pick up some form of this model provided with conserved quantities, which makes all the solutions to be periodic-in-time except for the equilibrium. This class is explicitly given by a set of algebraic conditions on coefficients. If the system takes N components, we have 2N-3 and 2N-1 degrees of freedom without and with linear terms, respectively.</description><subject>Dynamical systems</subject><subject>Lotka-Volterra system</subject><subject>Orbits</subject><subject>Periodic-in-time solution</subject><issn>0532-8721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAcFKzVk39gwWPZOpk02d2LIEWrUKjgxzVksxOb2nZrkiL9925pqac5zPPOwMvYDYchV7y6cxT9UOGQY3XGeiAF5mWB_IJdxrgAECgBe2wwbdO3yT_bZaIQTPa2i4lWMfv1aZ69UvBt4202C7VP8YqdO7OMdH2cffbx9Pg-fs6ns8nL-GGaW1EUKXdWUSMdL0vjmppLA8LRSBgrGgV1Q9aZqrAI1QiUlRZAcRBclXUjERSg6LPbw91NaH-2FJNetNuw7l5qRIF8hEryTg0OyoY2xkBOb4JfmbDTHPS-Ab1vQCvUXQOdvj_oRUzmi07WhOTtkv7tMXBa2LkJmtbiDzxaZqA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kobayashi, Manami</creator><creator>Suzuki, Takashi</creator><creator>Yamada, Yoshio</creator><general>Division of Functional Equations, The Mathematical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2019</creationdate><title>Lotka-Volterra Systems with Periodic Orbits</title><author>Kobayashi, Manami ; Suzuki, Takashi ; Yamada, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-fc6ed5f188afdb15a03fe43ac3d60bdecfa97c209406c5c006103168bd5206023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dynamical systems</topic><topic>Lotka-Volterra system</topic><topic>Orbits</topic><topic>Periodic-in-time solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Manami</creatorcontrib><creatorcontrib>Suzuki, Takashi</creatorcontrib><creatorcontrib>Yamada, Yoshio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Funkcialaj Ekvacioj</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Manami</au><au>Suzuki, Takashi</au><au>Yamada, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lotka-Volterra Systems with Periodic Orbits</atitle><jtitle>Funkcialaj Ekvacioj</jtitle><addtitle>FE</addtitle><date>2019</date><risdate>2019</risdate><volume>62</volume><issue>1</issue><spage>129</spage><epage>155</epage><pages>129-155</pages><issn>0532-8721</issn><abstract>Lotka-Volterra systems associated with skew-symmetric interaction between species are studied. We pick up some form of this model provided with conserved quantities, which makes all the solutions to be periodic-in-time except for the equilibrium. This class is explicitly given by a set of algebraic conditions on coefficients. If the system takes N components, we have 2N-3 and 2N-1 degrees of freedom without and with linear terms, respectively.</abstract><cop>Tokyo</cop><pub>Division of Functional Equations, The Mathematical Society of Japan</pub><doi>10.1619/fesi.62.129</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0532-8721
ispartof Funkcialaj Ekvacioj, 2019, Vol.62(1), pp.129-155
issn 0532-8721
language eng
recordid cdi_proquest_journals_2232142651
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Dynamical systems
Lotka-Volterra system
Orbits
Periodic-in-time solution
title Lotka-Volterra Systems with Periodic Orbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lotka-Volterra%20Systems%20with%20Periodic%20Orbits&rft.jtitle=Funkcialaj%20Ekvacioj&rft.au=Kobayashi,%20Manami&rft.date=2019&rft.volume=62&rft.issue=1&rft.spage=129&rft.epage=155&rft.pages=129-155&rft.issn=0532-8721&rft_id=info:doi/10.1619/fesi.62.129&rft_dat=%3Cproquest_cross%3E2232142651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232142651&rft_id=info:pmid/&rfr_iscdi=true