Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients

•Nonlinear convection-diffusion equations are considered.•Arbitrary functions are included in equations.•New functional separable solutions are presented.•Specific equations and their exact solutions are analyzed.•Solutions of delay convection-diffusion equations are given. The paper presents a numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2019-07, Vol.73, p.379-390
1. Verfasser: Polyanin, Andrei D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue
container_start_page 379
container_title Communications in nonlinear science & numerical simulation
container_volume 73
creator Polyanin, Andrei D.
description •Nonlinear convection-diffusion equations are considered.•Arbitrary functions are included in equations.•New functional separable solutions are presented.•Specific equations and their exact solutions are analyzed.•Solutions of delay convection-diffusion equations are given. The paper presents a number of new functional separable solutions to nonlinear convection–diffusion equations of the formc(x)ut=[a(x)ux]x+[b(x)+p(x)f(u)]ux,where f(u) is an arbitrary function. It shows that any three of the four variable coefficients a(x), b(x), c(x), p(x) of such equations can be chosen arbitrarily, and the remaining coefficient can be expressed through the others. Examples of specific equations and their exact solutions are given. The results obtained are generalized to more-complex nonlinear PDEs with variable coefficients. Also some functional separable solutions to nonlinear convection–diffusion equations with delayut=uxx+a(x)f(u,w)ux,w=u(x,t−τ),where τ > 0 is the delay time and f(u, w) is an arbitrary function of two arguments, are obtained.
doi_str_mv 10.1016/j.cnsns.2019.02.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2232032853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570419300553</els_id><sourcerecordid>2232032853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-210eacb948015e73538d1346f9333db4360fe31135a1c7dfc570f29bd28ef06d3</originalsourceid><addsrcrecordid>eNp9UM1KxDAYDKLguvoEXgqeW_PT34MHWVwVFrzoOaTJF02pyW7SrnjzHXxDn8R061kY-IaPmYEZhC4Jzggm5XWXSRtsyCgmTYZpBD1CC1JXdVrRKj-OHOMqLSqcn6KzEDocXU2RL9DrerRyMM6KPgmwFV60PSTB9eP0DInTiXW2NxaET6Szeziof76-ldF6DJEnsBvFrP4ww1uyF94cUqQDrY00YIdwjk606ANc_N0lelnfPa8e0s3T_ePqdpNKxsiQUoJByLbJa0wKqFjBakVYXuqGMabanJVYAyOEFYLISmkZK2natIrWoHGp2BJdzblb73YjhIF3bvSxXeCUMooZrQsWVWxWSe9C8KD51pt34T85wXxalHf8sCifFuWYRtDoupldEAvsDXgepnISlPFxFq6c-df_C4DCg2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232032853</pqid></control><display><type>article</type><title>Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients</title><source>Access via ScienceDirect (Elsevier)</source><creator>Polyanin, Andrei D.</creator><creatorcontrib>Polyanin, Andrei D.</creatorcontrib><description>•Nonlinear convection-diffusion equations are considered.•Arbitrary functions are included in equations.•New functional separable solutions are presented.•Specific equations and their exact solutions are analyzed.•Solutions of delay convection-diffusion equations are given. The paper presents a number of new functional separable solutions to nonlinear convection–diffusion equations of the formc(x)ut=[a(x)ux]x+[b(x)+p(x)f(u)]ux,where f(u) is an arbitrary function. It shows that any three of the four variable coefficients a(x), b(x), c(x), p(x) of such equations can be chosen arbitrarily, and the remaining coefficient can be expressed through the others. Examples of specific equations and their exact solutions are given. The results obtained are generalized to more-complex nonlinear PDEs with variable coefficients. Also some functional separable solutions to nonlinear convection–diffusion equations with delayut=uxx+a(x)f(u,w)ux,w=u(x,t−τ),where τ &gt; 0 is the delay time and f(u, w) is an arbitrary function of two arguments, are obtained.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2019.02.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary value problems ; Coefficients ; Convection-diffusion equation ; Convection–diffusion equations with delay ; Delay time ; Diffusion ; Equations with variable coefficients ; Exact solutions ; Functional separable solutions ; Linear equations ; Mathematical analysis ; Nonlinear convection–diffusion equations ; Nonlinear equations ; Nonlinear systems ; Partial differential equations</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2019-07, Vol.73, p.379-390</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jul 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-210eacb948015e73538d1346f9333db4360fe31135a1c7dfc570f29bd28ef06d3</citedby><cites>FETCH-LOGICAL-c331t-210eacb948015e73538d1346f9333db4360fe31135a1c7dfc570f29bd28ef06d3</cites><orcidid>0000-0002-2610-0590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2019.02.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Polyanin, Andrei D.</creatorcontrib><title>Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•Nonlinear convection-diffusion equations are considered.•Arbitrary functions are included in equations.•New functional separable solutions are presented.•Specific equations and their exact solutions are analyzed.•Solutions of delay convection-diffusion equations are given. The paper presents a number of new functional separable solutions to nonlinear convection–diffusion equations of the formc(x)ut=[a(x)ux]x+[b(x)+p(x)f(u)]ux,where f(u) is an arbitrary function. It shows that any three of the four variable coefficients a(x), b(x), c(x), p(x) of such equations can be chosen arbitrarily, and the remaining coefficient can be expressed through the others. Examples of specific equations and their exact solutions are given. The results obtained are generalized to more-complex nonlinear PDEs with variable coefficients. Also some functional separable solutions to nonlinear convection–diffusion equations with delayut=uxx+a(x)f(u,w)ux,w=u(x,t−τ),where τ &gt; 0 is the delay time and f(u, w) is an arbitrary function of two arguments, are obtained.</description><subject>Boundary value problems</subject><subject>Coefficients</subject><subject>Convection-diffusion equation</subject><subject>Convection–diffusion equations with delay</subject><subject>Delay time</subject><subject>Diffusion</subject><subject>Equations with variable coefficients</subject><subject>Exact solutions</subject><subject>Functional separable solutions</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Nonlinear convection–diffusion equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Partial differential equations</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UM1KxDAYDKLguvoEXgqeW_PT34MHWVwVFrzoOaTJF02pyW7SrnjzHXxDn8R061kY-IaPmYEZhC4Jzggm5XWXSRtsyCgmTYZpBD1CC1JXdVrRKj-OHOMqLSqcn6KzEDocXU2RL9DrerRyMM6KPgmwFV60PSTB9eP0DInTiXW2NxaET6Szeziof76-ldF6DJEnsBvFrP4ww1uyF94cUqQDrY00YIdwjk606ANc_N0lelnfPa8e0s3T_ePqdpNKxsiQUoJByLbJa0wKqFjBakVYXuqGMabanJVYAyOEFYLISmkZK2natIrWoHGp2BJdzblb73YjhIF3bvSxXeCUMooZrQsWVWxWSe9C8KD51pt34T85wXxalHf8sCifFuWYRtDoupldEAvsDXgepnISlPFxFq6c-df_C4DCg2U</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Polyanin, Andrei D.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2610-0590</orcidid></search><sort><creationdate>20190715</creationdate><title>Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients</title><author>Polyanin, Andrei D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-210eacb948015e73538d1346f9333db4360fe31135a1c7dfc570f29bd28ef06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Coefficients</topic><topic>Convection-diffusion equation</topic><topic>Convection–diffusion equations with delay</topic><topic>Delay time</topic><topic>Diffusion</topic><topic>Equations with variable coefficients</topic><topic>Exact solutions</topic><topic>Functional separable solutions</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Nonlinear convection–diffusion equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyanin, Andrei D.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyanin, Andrei D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2019-07-15</date><risdate>2019</risdate><volume>73</volume><spage>379</spage><epage>390</epage><pages>379-390</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•Nonlinear convection-diffusion equations are considered.•Arbitrary functions are included in equations.•New functional separable solutions are presented.•Specific equations and their exact solutions are analyzed.•Solutions of delay convection-diffusion equations are given. The paper presents a number of new functional separable solutions to nonlinear convection–diffusion equations of the formc(x)ut=[a(x)ux]x+[b(x)+p(x)f(u)]ux,where f(u) is an arbitrary function. It shows that any three of the four variable coefficients a(x), b(x), c(x), p(x) of such equations can be chosen arbitrarily, and the remaining coefficient can be expressed through the others. Examples of specific equations and their exact solutions are given. The results obtained are generalized to more-complex nonlinear PDEs with variable coefficients. Also some functional separable solutions to nonlinear convection–diffusion equations with delayut=uxx+a(x)f(u,w)ux,w=u(x,t−τ),where τ &gt; 0 is the delay time and f(u, w) is an arbitrary function of two arguments, are obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2019.02.022</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2610-0590</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2019-07, Vol.73, p.379-390
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2232032853
source Access via ScienceDirect (Elsevier)
subjects Boundary value problems
Coefficients
Convection-diffusion equation
Convection–diffusion equations with delay
Delay time
Diffusion
Equations with variable coefficients
Exact solutions
Functional separable solutions
Linear equations
Mathematical analysis
Nonlinear convection–diffusion equations
Nonlinear equations
Nonlinear systems
Partial differential equations
title Functional separable solutions of nonlinear convection–diffusion equations with variable coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20separable%20solutions%20of%20nonlinear%20convection%E2%80%93diffusion%20equations%20with%20variable%20coefficients&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Polyanin,%20Andrei%20D.&rft.date=2019-07-15&rft.volume=73&rft.spage=379&rft.epage=390&rft.pages=379-390&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2019.02.022&rft_dat=%3Cproquest_cross%3E2232032853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232032853&rft_id=info:pmid/&rft_els_id=S1007570419300553&rfr_iscdi=true