Variance Estimators of the Gini Coefficient-Probability Sampling
An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The...
Gespeichert in:
Veröffentlicht in: | Journal of business & economic statistics 1988-01, Vol.6 (1), p.113-119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Journal of business & economic statistics |
container_volume | 6 |
creator | Sandström, Arne Wretman, Jan H. Walden, Bertil |
description | An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data. |
doi_str_mv | 10.1080/07350015.1988.10509643 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_223194378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1391424</jstor_id><sourcerecordid>1391424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</originalsourceid><addsrcrecordid>eNqFkEtLAzEYRYMoWKt_QQZ1OzWPyWtnKbUKgoKPbchME02ZTmqSIv33ZhgLbsRsAuHc3O87AJwjOEFQwGvICYUQ0QmSQuQnCiWryAEYIUp4iTnkh2DUQ2VPHYOTGFcwH0HZCNy86eB015hiHpNb6-RDLLwt0ocpFq5zxcwba13jTJfKp-BrXbvWpV3xrNeb1nXvp-DI6jaas597DF5v5y-zu_LhcXE_mz6UDeE4lRViQkvGDKu1gAZRymQtsTZCVMtaSmSXVhijGWtMnt7Wcsm5RTmDWY10RcbgYvh3E_zn1sSkVn4bulypMCZIVoSLDF3-BSECIcW4gihTbKCa4GMMxqpNyKuHnUJQ9UrVXqnqlaq90hy8GoKrmD39TmECea6QqML9qNMBc531Ya2_fGiXKuld64MNWbaLivxT9Q2tzodM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1300522401</pqid></control><display><type>article</type><title>Variance Estimators of the Gini Coefficient-Probability Sampling</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Sandström, Arne ; Wretman, Jan H. ; Walden, Bertil</creator><creatorcontrib>Sandström, Arne ; Wretman, Jan H. ; Walden, Bertil</creatorcontrib><description>An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.1988.10509643</identifier><language>eng</language><publisher>Washington, D.C: Taylor & Francis</publisher><subject>Estimating techniques ; Estimators ; Estimators for the mean ; Gini coefficient ; Income distribution ; Income estimates ; Mathematical analysis ; Monte Carlo simulation ; Parents ; Population estimates ; Probability ; Random sampling ; Sampling ; Sampling distributions ; Sampling studies ; Simulations ; Statistical analysis ; Statistical variance ; Studies</subject><ispartof>Journal of business & economic statistics, 1988-01, Vol.6 (1), p.113-119</ispartof><rights>Copyright Taylor & Francis 1988</rights><rights>Copyright 1988 American Statistical Association</rights><rights>Copyright American Statistical Association Jan 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</citedby><cites>FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1391424$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1391424$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27869,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Sandström, Arne</creatorcontrib><creatorcontrib>Wretman, Jan H.</creatorcontrib><creatorcontrib>Walden, Bertil</creatorcontrib><title>Variance Estimators of the Gini Coefficient-Probability Sampling</title><title>Journal of business & economic statistics</title><description>An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data.</description><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Gini coefficient</subject><subject>Income distribution</subject><subject>Income estimates</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Parents</subject><subject>Population estimates</subject><subject>Probability</subject><subject>Random sampling</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Sampling studies</subject><subject>Simulations</subject><subject>Statistical analysis</subject><subject>Statistical variance</subject><subject>Studies</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkEtLAzEYRYMoWKt_QQZ1OzWPyWtnKbUKgoKPbchME02ZTmqSIv33ZhgLbsRsAuHc3O87AJwjOEFQwGvICYUQ0QmSQuQnCiWryAEYIUp4iTnkh2DUQ2VPHYOTGFcwH0HZCNy86eB015hiHpNb6-RDLLwt0ocpFq5zxcwba13jTJfKp-BrXbvWpV3xrNeb1nXvp-DI6jaas597DF5v5y-zu_LhcXE_mz6UDeE4lRViQkvGDKu1gAZRymQtsTZCVMtaSmSXVhijGWtMnt7Wcsm5RTmDWY10RcbgYvh3E_zn1sSkVn4bulypMCZIVoSLDF3-BSECIcW4gihTbKCa4GMMxqpNyKuHnUJQ9UrVXqnqlaq90hy8GoKrmD39TmECea6QqML9qNMBc531Ya2_fGiXKuld64MNWbaLivxT9Q2tzodM</recordid><startdate>19880101</startdate><enddate>19880101</enddate><creator>Sandström, Arne</creator><creator>Wretman, Jan H.</creator><creator>Walden, Bertil</creator><general>Taylor & Francis</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HFXKP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19880101</creationdate><title>Variance Estimators of the Gini Coefficient-Probability Sampling</title><author>Sandström, Arne ; Wretman, Jan H. ; Walden, Bertil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Gini coefficient</topic><topic>Income distribution</topic><topic>Income estimates</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Parents</topic><topic>Population estimates</topic><topic>Probability</topic><topic>Random sampling</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Sampling studies</topic><topic>Simulations</topic><topic>Statistical analysis</topic><topic>Statistical variance</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandström, Arne</creatorcontrib><creatorcontrib>Wretman, Jan H.</creatorcontrib><creatorcontrib>Walden, Bertil</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 17</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of business & economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandström, Arne</au><au>Wretman, Jan H.</au><au>Walden, Bertil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance Estimators of the Gini Coefficient-Probability Sampling</atitle><jtitle>Journal of business & economic statistics</jtitle><date>1988-01-01</date><risdate>1988</risdate><volume>6</volume><issue>1</issue><spage>113</spage><epage>119</epage><pages>113-119</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data.</abstract><cop>Washington, D.C</cop><pub>Taylor & Francis</pub><doi>10.1080/07350015.1988.10509643</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-0015 |
ispartof | Journal of business & economic statistics, 1988-01, Vol.6 (1), p.113-119 |
issn | 0735-0015 1537-2707 |
language | eng |
recordid | cdi_proquest_journals_223194378 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Estimating techniques Estimators Estimators for the mean Gini coefficient Income distribution Income estimates Mathematical analysis Monte Carlo simulation Parents Population estimates Probability Random sampling Sampling Sampling distributions Sampling studies Simulations Statistical analysis Statistical variance Studies |
title | Variance Estimators of the Gini Coefficient-Probability Sampling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance%20Estimators%20of%20the%20Gini%20Coefficient-Probability%20Sampling&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Sandstr%C3%B6m,%20Arne&rft.date=1988-01-01&rft.volume=6&rft.issue=1&rft.spage=113&rft.epage=119&rft.pages=113-119&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.1988.10509643&rft_dat=%3Cjstor_proqu%3E1391424%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1300522401&rft_id=info:pmid/&rft_jstor_id=1391424&rfr_iscdi=true |