Variance Estimators of the Gini Coefficient-Probability Sampling

An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of business & economic statistics 1988-01, Vol.6 (1), p.113-119
Hauptverfasser: Sandström, Arne, Wretman, Jan H., Walden, Bertil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 113
container_title Journal of business & economic statistics
container_volume 6
creator Sandström, Arne
Wretman, Jan H.
Walden, Bertil
description An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data.
doi_str_mv 10.1080/07350015.1988.10509643
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_223194378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1391424</jstor_id><sourcerecordid>1391424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</originalsourceid><addsrcrecordid>eNqFkEtLAzEYRYMoWKt_QQZ1OzWPyWtnKbUKgoKPbchME02ZTmqSIv33ZhgLbsRsAuHc3O87AJwjOEFQwGvICYUQ0QmSQuQnCiWryAEYIUp4iTnkh2DUQ2VPHYOTGFcwH0HZCNy86eB015hiHpNb6-RDLLwt0ocpFq5zxcwba13jTJfKp-BrXbvWpV3xrNeb1nXvp-DI6jaas597DF5v5y-zu_LhcXE_mz6UDeE4lRViQkvGDKu1gAZRymQtsTZCVMtaSmSXVhijGWtMnt7Wcsm5RTmDWY10RcbgYvh3E_zn1sSkVn4bulypMCZIVoSLDF3-BSECIcW4gihTbKCa4GMMxqpNyKuHnUJQ9UrVXqnqlaq90hy8GoKrmD39TmECea6QqML9qNMBc531Ya2_fGiXKuld64MNWbaLivxT9Q2tzodM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1300522401</pqid></control><display><type>article</type><title>Variance Estimators of the Gini Coefficient-Probability Sampling</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Sandström, Arne ; Wretman, Jan H. ; Walden, Bertil</creator><creatorcontrib>Sandström, Arne ; Wretman, Jan H. ; Walden, Bertil</creatorcontrib><description>An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data.</description><identifier>ISSN: 0735-0015</identifier><identifier>EISSN: 1537-2707</identifier><identifier>DOI: 10.1080/07350015.1988.10509643</identifier><language>eng</language><publisher>Washington, D.C: Taylor &amp; Francis</publisher><subject>Estimating techniques ; Estimators ; Estimators for the mean ; Gini coefficient ; Income distribution ; Income estimates ; Mathematical analysis ; Monte Carlo simulation ; Parents ; Population estimates ; Probability ; Random sampling ; Sampling ; Sampling distributions ; Sampling studies ; Simulations ; Statistical analysis ; Statistical variance ; Studies</subject><ispartof>Journal of business &amp; economic statistics, 1988-01, Vol.6 (1), p.113-119</ispartof><rights>Copyright Taylor &amp; Francis 1988</rights><rights>Copyright 1988 American Statistical Association</rights><rights>Copyright American Statistical Association Jan 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</citedby><cites>FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1391424$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1391424$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27869,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Sandström, Arne</creatorcontrib><creatorcontrib>Wretman, Jan H.</creatorcontrib><creatorcontrib>Walden, Bertil</creatorcontrib><title>Variance Estimators of the Gini Coefficient-Probability Sampling</title><title>Journal of business &amp; economic statistics</title><description>An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data.</description><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Gini coefficient</subject><subject>Income distribution</subject><subject>Income estimates</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Parents</subject><subject>Population estimates</subject><subject>Probability</subject><subject>Random sampling</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Sampling studies</subject><subject>Simulations</subject><subject>Statistical analysis</subject><subject>Statistical variance</subject><subject>Studies</subject><issn>0735-0015</issn><issn>1537-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNqFkEtLAzEYRYMoWKt_QQZ1OzWPyWtnKbUKgoKPbchME02ZTmqSIv33ZhgLbsRsAuHc3O87AJwjOEFQwGvICYUQ0QmSQuQnCiWryAEYIUp4iTnkh2DUQ2VPHYOTGFcwH0HZCNy86eB015hiHpNb6-RDLLwt0ocpFq5zxcwba13jTJfKp-BrXbvWpV3xrNeb1nXvp-DI6jaas597DF5v5y-zu_LhcXE_mz6UDeE4lRViQkvGDKu1gAZRymQtsTZCVMtaSmSXVhijGWtMnt7Wcsm5RTmDWY10RcbgYvh3E_zn1sSkVn4bulypMCZIVoSLDF3-BSECIcW4gihTbKCa4GMMxqpNyKuHnUJQ9UrVXqnqlaq90hy8GoKrmD39TmECea6QqML9qNMBc531Ya2_fGiXKuld64MNWbaLivxT9Q2tzodM</recordid><startdate>19880101</startdate><enddate>19880101</enddate><creator>Sandström, Arne</creator><creator>Wretman, Jan H.</creator><creator>Walden, Bertil</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>HFXKP</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19880101</creationdate><title>Variance Estimators of the Gini Coefficient-Probability Sampling</title><author>Sandström, Arne ; Wretman, Jan H. ; Walden, Bertil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4168a966e6ba80e15569b92ae884db991fdf8eea66ce643fb9d77f18a926b1a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Gini coefficient</topic><topic>Income distribution</topic><topic>Income estimates</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Parents</topic><topic>Population estimates</topic><topic>Probability</topic><topic>Random sampling</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Sampling studies</topic><topic>Simulations</topic><topic>Statistical analysis</topic><topic>Statistical variance</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandström, Arne</creatorcontrib><creatorcontrib>Wretman, Jan H.</creatorcontrib><creatorcontrib>Walden, Bertil</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 17</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of business &amp; economic statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandström, Arne</au><au>Wretman, Jan H.</au><au>Walden, Bertil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variance Estimators of the Gini Coefficient-Probability Sampling</atitle><jtitle>Journal of business &amp; economic statistics</jtitle><date>1988-01-01</date><risdate>1988</risdate><volume>6</volume><issue>1</issue><spage>113</spage><epage>119</epage><pages>113-119</pages><issn>0735-0015</issn><eissn>1537-2707</eissn><abstract>An estimator of the Gini coefficient (the well-known income inequality measure) of a finite population is defined for an arbitrary probability sampling design, taking the sampling design into consideration. Alternative estimators of the variance of the estimated Gini coefficient are introduced. The sampling performance of the Gini coefficient estimator and its variance estimators is studied by means of a Monte Carlo study, using stratified sampling from a miniature population of Swedish households with authentic income data.</abstract><cop>Washington, D.C</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/07350015.1988.10509643</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-0015
ispartof Journal of business & economic statistics, 1988-01, Vol.6 (1), p.113-119
issn 0735-0015
1537-2707
language eng
recordid cdi_proquest_journals_223194378
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Estimating techniques
Estimators
Estimators for the mean
Gini coefficient
Income distribution
Income estimates
Mathematical analysis
Monte Carlo simulation
Parents
Population estimates
Probability
Random sampling
Sampling
Sampling distributions
Sampling studies
Simulations
Statistical analysis
Statistical variance
Studies
title Variance Estimators of the Gini Coefficient-Probability Sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variance%20Estimators%20of%20the%20Gini%20Coefficient-Probability%20Sampling&rft.jtitle=Journal%20of%20business%20&%20economic%20statistics&rft.au=Sandstr%C3%B6m,%20Arne&rft.date=1988-01-01&rft.volume=6&rft.issue=1&rft.spage=113&rft.epage=119&rft.pages=113-119&rft.issn=0735-0015&rft.eissn=1537-2707&rft_id=info:doi/10.1080/07350015.1988.10509643&rft_dat=%3Cjstor_proqu%3E1391424%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1300522401&rft_id=info:pmid/&rft_jstor_id=1391424&rfr_iscdi=true