GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging

Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2019-06, Vol.40 (6), p.881-884
Hauptverfasser: Tadjer, Marko J., Anderson, Travis J., Ancona, Mario G., Raad, Peter E., Komarov, Pavel, Bai, Tingyu, Gallagher, James C., Koehler, Andrew D., Goorsky, Mark S., Francis, Daniel A., Hobart, Karl D., Kub, Fritz J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 6
container_start_page 881
container_title IEEE electron device letters
container_volume 40
creator Tadjer, Marko J.
Anderson, Travis J.
Ancona, Mario G.
Raad, Peter E.
Komarov, Pavel
Bai, Tingyu
Gallagher, James C.
Koehler, Andrew D.
Goorsky, Mark S.
Francis, Daniel A.
Hobart, Karl D.
Kub, Fritz J.
description Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively.
doi_str_mv 10.1109/LED.2019.2909289
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2231870664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8686258</ieee_id><sourcerecordid>2231870664</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-db15ef064254c04ea94628282fdf3d6803d6701137b871a0f171d1ccade496903</originalsourceid><addsrcrecordid>eNotjc9OwkAYxDdGExG9m3jZxKuF_bbb_XPwQACBBMRDlWOztF-hhG5xW4y8lc_gk9kEM8lMMvllhpB7YD0AZvrz8ajHGZgeN8xwbS5IB6JIByyS4SXpMCUgCIHJa3JT1zvGQAglOuRrYl-DpQtGhS0rl9HpeBHTGNOtq_bV5kRXRbOl8eBjQp8pKPn7M6S2oW-j4VNpv9suknTVL0u6QFsfPWZ0faKxt64u0DU03qIvK4_5HtPGuhTprLSbwm1uyVVu9zXe_WeXvL-M4-E0mC8ns-FgHhQAugmyNUSYMyl4JFIm0BohuW6VZ3mYSc1aUwwgVGutwLIcFGSQpjZDYaRhYZc8nncPvvo8Yt0ku-roXXuZcB6CVkxK0VIPZ6pAxOTgi9L6U6KlljzS4R9-omOX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231870664</pqid></control><display><type>article</type><title>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Tadjer, Marko J. ; Anderson, Travis J. ; Ancona, Mario G. ; Raad, Peter E. ; Komarov, Pavel ; Bai, Tingyu ; Gallagher, James C. ; Koehler, Andrew D. ; Goorsky, Mark S. ; Francis, Daniel A. ; Hobart, Karl D. ; Kub, Fritz J.</creator><creatorcontrib>Tadjer, Marko J. ; Anderson, Travis J. ; Ancona, Mario G. ; Raad, Peter E. ; Komarov, Pavel ; Bai, Tingyu ; Gallagher, James C. ; Koehler, Andrew D. ; Goorsky, Mark S. ; Francis, Daniel A. ; Hobart, Karl D. ; Kub, Fritz J.</creatorcontrib><description>Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2909289</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitrides ; Chemical vapor deposition ; Computer simulation ; Diamond ; Diamonds ; Electron mobility ; Gallium nitride ; Gallium nitrides ; GaN ; HEMTs ; High electron mobility transistors ; Interlayers ; Organic chemistry ; Semiconductor devices ; Silicon substrates ; Substrates ; Temperature measurement ; Thermal imaging ; thermal management ; Thermal resistance ; thermoreflectance ; transmission electron microscopy</subject><ispartof>IEEE electron device letters, 2019-06, Vol.40 (6), p.881-884</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7248-1339 ; 0000-0003-3894-312X ; 0000-0002-3416-6688 ; 0000-0002-2388-2937 ; 0000-0002-3840-8357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8686258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8686258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Ancona, Mario G.</creatorcontrib><creatorcontrib>Raad, Peter E.</creatorcontrib><creatorcontrib>Komarov, Pavel</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Gallagher, James C.</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Goorsky, Mark S.</creatorcontrib><creatorcontrib>Francis, Daniel A.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Kub, Fritz J.</creatorcontrib><title>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively.</description><subject>Aluminum gallium nitrides</subject><subject>Chemical vapor deposition</subject><subject>Computer simulation</subject><subject>Diamond</subject><subject>Diamonds</subject><subject>Electron mobility</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Interlayers</subject><subject>Organic chemistry</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Substrates</subject><subject>Temperature measurement</subject><subject>Thermal imaging</subject><subject>thermal management</subject><subject>Thermal resistance</subject><subject>thermoreflectance</subject><subject>transmission electron microscopy</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjc9OwkAYxDdGExG9m3jZxKuF_bbb_XPwQACBBMRDlWOztF-hhG5xW4y8lc_gk9kEM8lMMvllhpB7YD0AZvrz8ajHGZgeN8xwbS5IB6JIByyS4SXpMCUgCIHJa3JT1zvGQAglOuRrYl-DpQtGhS0rl9HpeBHTGNOtq_bV5kRXRbOl8eBjQp8pKPn7M6S2oW-j4VNpv9suknTVL0u6QFsfPWZ0faKxt64u0DU03qIvK4_5HtPGuhTprLSbwm1uyVVu9zXe_WeXvL-M4-E0mC8ns-FgHhQAugmyNUSYMyl4JFIm0BohuW6VZ3mYSc1aUwwgVGutwLIcFGSQpjZDYaRhYZc8nncPvvo8Yt0ku-roXXuZcB6CVkxK0VIPZ6pAxOTgi9L6U6KlljzS4R9-omOX</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Tadjer, Marko J.</creator><creator>Anderson, Travis J.</creator><creator>Ancona, Mario G.</creator><creator>Raad, Peter E.</creator><creator>Komarov, Pavel</creator><creator>Bai, Tingyu</creator><creator>Gallagher, James C.</creator><creator>Koehler, Andrew D.</creator><creator>Goorsky, Mark S.</creator><creator>Francis, Daniel A.</creator><creator>Hobart, Karl D.</creator><creator>Kub, Fritz J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0003-3894-312X</orcidid><orcidid>https://orcid.org/0000-0002-3416-6688</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid></search><sort><creationdate>20190601</creationdate><title>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</title><author>Tadjer, Marko J. ; Anderson, Travis J. ; Ancona, Mario G. ; Raad, Peter E. ; Komarov, Pavel ; Bai, Tingyu ; Gallagher, James C. ; Koehler, Andrew D. ; Goorsky, Mark S. ; Francis, Daniel A. ; Hobart, Karl D. ; Kub, Fritz J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-db15ef064254c04ea94628282fdf3d6803d6701137b871a0f171d1ccade496903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum gallium nitrides</topic><topic>Chemical vapor deposition</topic><topic>Computer simulation</topic><topic>Diamond</topic><topic>Diamonds</topic><topic>Electron mobility</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Interlayers</topic><topic>Organic chemistry</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Substrates</topic><topic>Temperature measurement</topic><topic>Thermal imaging</topic><topic>thermal management</topic><topic>Thermal resistance</topic><topic>thermoreflectance</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Ancona, Mario G.</creatorcontrib><creatorcontrib>Raad, Peter E.</creatorcontrib><creatorcontrib>Komarov, Pavel</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Gallagher, James C.</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Goorsky, Mark S.</creatorcontrib><creatorcontrib>Francis, Daniel A.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Kub, Fritz J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tadjer, Marko J.</au><au>Anderson, Travis J.</au><au>Ancona, Mario G.</au><au>Raad, Peter E.</au><au>Komarov, Pavel</au><au>Bai, Tingyu</au><au>Gallagher, James C.</au><au>Koehler, Andrew D.</au><au>Goorsky, Mark S.</au><au>Francis, Daniel A.</au><au>Hobart, Karl D.</au><au>Kub, Fritz J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>40</volume><issue>6</issue><spage>881</spage><epage>884</epage><pages>881-884</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2909289</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0003-3894-312X</orcidid><orcidid>https://orcid.org/0000-0002-3416-6688</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2019-06, Vol.40 (6), p.881-884
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_journals_2231870664
source IEEE Electronic Library (IEL)
subjects Aluminum gallium nitrides
Chemical vapor deposition
Computer simulation
Diamond
Diamonds
Electron mobility
Gallium nitride
Gallium nitrides
GaN
HEMTs
High electron mobility transistors
Interlayers
Organic chemistry
Semiconductor devices
Silicon substrates
Substrates
Temperature measurement
Thermal imaging
thermal management
Thermal resistance
thermoreflectance
transmission electron microscopy
title GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaN-On-Diamond%20HEMT%20Technology%20With%20TAVG%20=%20176%C2%B0C%20at%20PDC,max%20=%2056%20W/mm%20Measured%20by%20Transient%20Thermoreflectance%20Imaging&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Tadjer,%20Marko%20J.&rft.date=2019-06-01&rft.volume=40&rft.issue=6&rft.spage=881&rft.epage=884&rft.pages=881-884&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2909289&rft_dat=%3Cproquest_RIE%3E2231870664%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231870664&rft_id=info:pmid/&rft_ieee_id=8686258&rfr_iscdi=true