GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging
Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2019-06, Vol.40 (6), p.881-884 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 6 |
container_start_page | 881 |
container_title | IEEE electron device letters |
container_volume | 40 |
creator | Tadjer, Marko J. Anderson, Travis J. Ancona, Mario G. Raad, Peter E. Komarov, Pavel Bai, Tingyu Gallagher, James C. Koehler, Andrew D. Goorsky, Mark S. Francis, Daniel A. Hobart, Karl D. Kub, Fritz J. |
description | Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively. |
doi_str_mv | 10.1109/LED.2019.2909289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2231870664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8686258</ieee_id><sourcerecordid>2231870664</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-db15ef064254c04ea94628282fdf3d6803d6701137b871a0f171d1ccade496903</originalsourceid><addsrcrecordid>eNotjc9OwkAYxDdGExG9m3jZxKuF_bbb_XPwQACBBMRDlWOztF-hhG5xW4y8lc_gk9kEM8lMMvllhpB7YD0AZvrz8ajHGZgeN8xwbS5IB6JIByyS4SXpMCUgCIHJa3JT1zvGQAglOuRrYl-DpQtGhS0rl9HpeBHTGNOtq_bV5kRXRbOl8eBjQp8pKPn7M6S2oW-j4VNpv9suknTVL0u6QFsfPWZ0faKxt64u0DU03qIvK4_5HtPGuhTprLSbwm1uyVVu9zXe_WeXvL-M4-E0mC8ns-FgHhQAugmyNUSYMyl4JFIm0BohuW6VZ3mYSc1aUwwgVGutwLIcFGSQpjZDYaRhYZc8nncPvvo8Yt0ku-roXXuZcB6CVkxK0VIPZ6pAxOTgi9L6U6KlljzS4R9-omOX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231870664</pqid></control><display><type>article</type><title>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Tadjer, Marko J. ; Anderson, Travis J. ; Ancona, Mario G. ; Raad, Peter E. ; Komarov, Pavel ; Bai, Tingyu ; Gallagher, James C. ; Koehler, Andrew D. ; Goorsky, Mark S. ; Francis, Daniel A. ; Hobart, Karl D. ; Kub, Fritz J.</creator><creatorcontrib>Tadjer, Marko J. ; Anderson, Travis J. ; Ancona, Mario G. ; Raad, Peter E. ; Komarov, Pavel ; Bai, Tingyu ; Gallagher, James C. ; Koehler, Andrew D. ; Goorsky, Mark S. ; Francis, Daniel A. ; Hobart, Karl D. ; Kub, Fritz J.</creatorcontrib><description>Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2909289</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum gallium nitrides ; Chemical vapor deposition ; Computer simulation ; Diamond ; Diamonds ; Electron mobility ; Gallium nitride ; Gallium nitrides ; GaN ; HEMTs ; High electron mobility transistors ; Interlayers ; Organic chemistry ; Semiconductor devices ; Silicon substrates ; Substrates ; Temperature measurement ; Thermal imaging ; thermal management ; Thermal resistance ; thermoreflectance ; transmission electron microscopy</subject><ispartof>IEEE electron device letters, 2019-06, Vol.40 (6), p.881-884</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7248-1339 ; 0000-0003-3894-312X ; 0000-0002-3416-6688 ; 0000-0002-2388-2937 ; 0000-0002-3840-8357</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8686258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8686258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Ancona, Mario G.</creatorcontrib><creatorcontrib>Raad, Peter E.</creatorcontrib><creatorcontrib>Komarov, Pavel</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Gallagher, James C.</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Goorsky, Mark S.</creatorcontrib><creatorcontrib>Francis, Daniel A.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Kub, Fritz J.</creatorcontrib><title>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively.</description><subject>Aluminum gallium nitrides</subject><subject>Chemical vapor deposition</subject><subject>Computer simulation</subject><subject>Diamond</subject><subject>Diamonds</subject><subject>Electron mobility</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Interlayers</subject><subject>Organic chemistry</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><subject>Substrates</subject><subject>Temperature measurement</subject><subject>Thermal imaging</subject><subject>thermal management</subject><subject>Thermal resistance</subject><subject>thermoreflectance</subject><subject>transmission electron microscopy</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjc9OwkAYxDdGExG9m3jZxKuF_bbb_XPwQACBBMRDlWOztF-hhG5xW4y8lc_gk9kEM8lMMvllhpB7YD0AZvrz8ajHGZgeN8xwbS5IB6JIByyS4SXpMCUgCIHJa3JT1zvGQAglOuRrYl-DpQtGhS0rl9HpeBHTGNOtq_bV5kRXRbOl8eBjQp8pKPn7M6S2oW-j4VNpv9suknTVL0u6QFsfPWZ0faKxt64u0DU03qIvK4_5HtPGuhTprLSbwm1uyVVu9zXe_WeXvL-M4-E0mC8ns-FgHhQAugmyNUSYMyl4JFIm0BohuW6VZ3mYSc1aUwwgVGutwLIcFGSQpjZDYaRhYZc8nncPvvo8Yt0ku-roXXuZcB6CVkxK0VIPZ6pAxOTgi9L6U6KlljzS4R9-omOX</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Tadjer, Marko J.</creator><creator>Anderson, Travis J.</creator><creator>Ancona, Mario G.</creator><creator>Raad, Peter E.</creator><creator>Komarov, Pavel</creator><creator>Bai, Tingyu</creator><creator>Gallagher, James C.</creator><creator>Koehler, Andrew D.</creator><creator>Goorsky, Mark S.</creator><creator>Francis, Daniel A.</creator><creator>Hobart, Karl D.</creator><creator>Kub, Fritz J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0003-3894-312X</orcidid><orcidid>https://orcid.org/0000-0002-3416-6688</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid></search><sort><creationdate>20190601</creationdate><title>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</title><author>Tadjer, Marko J. ; Anderson, Travis J. ; Ancona, Mario G. ; Raad, Peter E. ; Komarov, Pavel ; Bai, Tingyu ; Gallagher, James C. ; Koehler, Andrew D. ; Goorsky, Mark S. ; Francis, Daniel A. ; Hobart, Karl D. ; Kub, Fritz J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-db15ef064254c04ea94628282fdf3d6803d6701137b871a0f171d1ccade496903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum gallium nitrides</topic><topic>Chemical vapor deposition</topic><topic>Computer simulation</topic><topic>Diamond</topic><topic>Diamonds</topic><topic>Electron mobility</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Interlayers</topic><topic>Organic chemistry</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><topic>Substrates</topic><topic>Temperature measurement</topic><topic>Thermal imaging</topic><topic>thermal management</topic><topic>Thermal resistance</topic><topic>thermoreflectance</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadjer, Marko J.</creatorcontrib><creatorcontrib>Anderson, Travis J.</creatorcontrib><creatorcontrib>Ancona, Mario G.</creatorcontrib><creatorcontrib>Raad, Peter E.</creatorcontrib><creatorcontrib>Komarov, Pavel</creatorcontrib><creatorcontrib>Bai, Tingyu</creatorcontrib><creatorcontrib>Gallagher, James C.</creatorcontrib><creatorcontrib>Koehler, Andrew D.</creatorcontrib><creatorcontrib>Goorsky, Mark S.</creatorcontrib><creatorcontrib>Francis, Daniel A.</creatorcontrib><creatorcontrib>Hobart, Karl D.</creatorcontrib><creatorcontrib>Kub, Fritz J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tadjer, Marko J.</au><au>Anderson, Travis J.</au><au>Ancona, Mario G.</au><au>Raad, Peter E.</au><au>Komarov, Pavel</au><au>Bai, Tingyu</au><au>Gallagher, James C.</au><au>Koehler, Andrew D.</au><au>Goorsky, Mark S.</au><au>Francis, Daniel A.</au><au>Hobart, Karl D.</au><au>Kub, Fritz J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>40</volume><issue>6</issue><spage>881</spage><epage>884</epage><pages>881-884</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Record DC power has been demonstrated in AlGaN/GaN high electron mobility transistors fabricated using a substrate replacement process in which a thick diamond substrate is grown by chemical vapor deposition following removal of the original Si substrate. Crucial to the process is a ~30 nm thick SiN interlayer that has been optimized for thermal resistance. The reductions obtained in self-heating have been quantified by transient thermoreflectance imaging and interpreted using 3D numerical simulation. With a DC power dissipation level of 56 W/mm, the measured average and maximum temperatures in the gate-drain access region were 176 °C and 205 °C, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2909289</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7248-1339</orcidid><orcidid>https://orcid.org/0000-0003-3894-312X</orcidid><orcidid>https://orcid.org/0000-0002-3416-6688</orcidid><orcidid>https://orcid.org/0000-0002-2388-2937</orcidid><orcidid>https://orcid.org/0000-0002-3840-8357</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2019-06, Vol.40 (6), p.881-884 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_proquest_journals_2231870664 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum gallium nitrides Chemical vapor deposition Computer simulation Diamond Diamonds Electron mobility Gallium nitride Gallium nitrides GaN HEMTs High electron mobility transistors Interlayers Organic chemistry Semiconductor devices Silicon substrates Substrates Temperature measurement Thermal imaging thermal management Thermal resistance thermoreflectance transmission electron microscopy |
title | GaN-On-Diamond HEMT Technology With TAVG = 176°C at PDC,max = 56 W/mm Measured by Transient Thermoreflectance Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaN-On-Diamond%20HEMT%20Technology%20With%20TAVG%20=%20176%C2%B0C%20at%20PDC,max%20=%2056%20W/mm%20Measured%20by%20Transient%20Thermoreflectance%20Imaging&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Tadjer,%20Marko%20J.&rft.date=2019-06-01&rft.volume=40&rft.issue=6&rft.spage=881&rft.epage=884&rft.pages=881-884&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2909289&rft_dat=%3Cproquest_RIE%3E2231870664%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231870664&rft_id=info:pmid/&rft_ieee_id=8686258&rfr_iscdi=true |