Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure

Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian Journal of Physical Chemistry A 2019-05, Vol.93 (5), p.909-916
Hauptverfasser: Parisa Zare, Rezania, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 916
container_issue 5
container_start_page 909
container_title Russian Journal of Physical Chemistry A
container_volume 93
creator Parisa Zare
Rezania, H.
description Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter.
doi_str_mv 10.1134/S0036024419050364
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231465209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231465209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9Gd_ROTo5TaCgULreAtJJvZNiXdjbvJwW_vxgoexNO8mfm9NzCE3AK7BxDyYcOYSBmXEnKmopRnZAJKQJKl4v2cTMZ1Mu4vyVUIB8ZkROWE4NwY1D11hi5dG3psLJ23ceKdTdZ7Z52lMzd0bWN3NOrtHv3R4TfRaLr2rkPfNxjGhEXZdVjThS-7PVqkm94Puh88XpMLU7YBb37qlLw9z7ezZbJ6XbzMnlaJFpD2SaVUKRjLa5EbqREqwQQXHLKM65TXBo2WRlVVxtLHXIlKITdV7Os65QA5iCm5O-V23n0MGPri4AZv48mCcwEyVZzlkYITpb0LwaMpOt8cS_9ZACvGbxZ_vhk9_OQJkbU79L_J_5u-APUPdsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231465209</pqid></control><display><type>article</type><title>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Parisa Zare ; Rezania, H.</creator><creatorcontrib>Parisa Zare ; Rezania, H.</creatorcontrib><description>Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter.</description><identifier>ISSN: 0036-0244</identifier><identifier>EISSN: 1531-863X</identifier><identifier>DOI: 10.1134/S0036024419050364</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Coupling ; Electrons ; Graphene ; Heat conductivity ; Heat transfer ; Parameters ; Phonons ; Physical Chemistry ; Physical Chemistry of Nanoclusters and Nanomaterials ; Seebeck effect ; Temperature ; Temperature dependence ; Thermal conductivity ; Transport properties</subject><ispartof>Russian Journal of Physical Chemistry A, 2019-05, Vol.93 (5), p.909-916</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</citedby><cites>FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0036024419050364$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0036024419050364$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Parisa Zare</creatorcontrib><creatorcontrib>Rezania, H.</creatorcontrib><title>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</title><title>Russian Journal of Physical Chemistry A</title><addtitle>Russ. J. Phys. Chem</addtitle><description>Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Parameters</subject><subject>Phonons</subject><subject>Physical Chemistry</subject><subject>Physical Chemistry of Nanoclusters and Nanomaterials</subject><subject>Seebeck effect</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><issn>0036-0244</issn><issn>1531-863X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9Gd_ROTo5TaCgULreAtJJvZNiXdjbvJwW_vxgoexNO8mfm9NzCE3AK7BxDyYcOYSBmXEnKmopRnZAJKQJKl4v2cTMZ1Mu4vyVUIB8ZkROWE4NwY1D11hi5dG3psLJ23ceKdTdZ7Z52lMzd0bWN3NOrtHv3R4TfRaLr2rkPfNxjGhEXZdVjThS-7PVqkm94Puh88XpMLU7YBb37qlLw9z7ezZbJ6XbzMnlaJFpD2SaVUKRjLa5EbqREqwQQXHLKM65TXBo2WRlVVxtLHXIlKITdV7Os65QA5iCm5O-V23n0MGPri4AZv48mCcwEyVZzlkYITpb0LwaMpOt8cS_9ZACvGbxZ_vhk9_OQJkbU79L_J_5u-APUPdsw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Parisa Zare</creator><creator>Rezania, H.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</title><author>Parisa Zare ; Rezania, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Parameters</topic><topic>Phonons</topic><topic>Physical Chemistry</topic><topic>Physical Chemistry of Nanoclusters and Nanomaterials</topic><topic>Seebeck effect</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parisa Zare</creatorcontrib><creatorcontrib>Rezania, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian Journal of Physical Chemistry A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parisa Zare</au><au>Rezania, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</atitle><jtitle>Russian Journal of Physical Chemistry A</jtitle><stitle>Russ. J. Phys. Chem</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>93</volume><issue>5</issue><spage>909</spage><epage>916</epage><pages>909-916</pages><issn>0036-0244</issn><eissn>1531-863X</eissn><abstract>Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0036024419050364</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-0244
ispartof Russian Journal of Physical Chemistry A, 2019-05, Vol.93 (5), p.909-916
issn 0036-0244
1531-863X
language eng
recordid cdi_proquest_journals_2231465209
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Chemistry and Materials Science
Coupling
Electrons
Graphene
Heat conductivity
Heat transfer
Parameters
Phonons
Physical Chemistry
Physical Chemistry of Nanoclusters and Nanomaterials
Seebeck effect
Temperature
Temperature dependence
Thermal conductivity
Transport properties
title Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Holstein%20Electron-Phonon%20Coupling%20on%20Thermoelectric%20Properties%20of%20Gapped%20Graphene%20Structure&rft.jtitle=Russian%20Journal%20of%20Physical%20Chemistry%20A&rft.au=Parisa%20Zare&rft.date=2019-05-01&rft.volume=93&rft.issue=5&rft.spage=909&rft.epage=916&rft.pages=909-916&rft.issn=0036-0244&rft.eissn=1531-863X&rft_id=info:doi/10.1134/S0036024419050364&rft_dat=%3Cproquest_cross%3E2231465209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231465209&rft_id=info:pmid/&rfr_iscdi=true