Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure
Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has bee...
Gespeichert in:
Veröffentlicht in: | Russian Journal of Physical Chemistry A 2019-05, Vol.93 (5), p.909-916 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 916 |
---|---|
container_issue | 5 |
container_start_page | 909 |
container_title | Russian Journal of Physical Chemistry A |
container_volume | 93 |
creator | Parisa Zare Rezania, H. |
description | Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter. |
doi_str_mv | 10.1134/S0036024419050364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231465209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231465209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9Gd_ROTo5TaCgULreAtJJvZNiXdjbvJwW_vxgoexNO8mfm9NzCE3AK7BxDyYcOYSBmXEnKmopRnZAJKQJKl4v2cTMZ1Mu4vyVUIB8ZkROWE4NwY1D11hi5dG3psLJ23ceKdTdZ7Z52lMzd0bWN3NOrtHv3R4TfRaLr2rkPfNxjGhEXZdVjThS-7PVqkm94Puh88XpMLU7YBb37qlLw9z7ezZbJ6XbzMnlaJFpD2SaVUKRjLa5EbqREqwQQXHLKM65TXBo2WRlVVxtLHXIlKITdV7Os65QA5iCm5O-V23n0MGPri4AZv48mCcwEyVZzlkYITpb0LwaMpOt8cS_9ZACvGbxZ_vhk9_OQJkbU79L_J_5u-APUPdsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231465209</pqid></control><display><type>article</type><title>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Parisa Zare ; Rezania, H.</creator><creatorcontrib>Parisa Zare ; Rezania, H.</creatorcontrib><description>Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter.</description><identifier>ISSN: 0036-0244</identifier><identifier>EISSN: 1531-863X</identifier><identifier>DOI: 10.1134/S0036024419050364</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Coupling ; Electrons ; Graphene ; Heat conductivity ; Heat transfer ; Parameters ; Phonons ; Physical Chemistry ; Physical Chemistry of Nanoclusters and Nanomaterials ; Seebeck effect ; Temperature ; Temperature dependence ; Thermal conductivity ; Transport properties</subject><ispartof>Russian Journal of Physical Chemistry A, 2019-05, Vol.93 (5), p.909-916</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</citedby><cites>FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0036024419050364$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0036024419050364$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Parisa Zare</creatorcontrib><creatorcontrib>Rezania, H.</creatorcontrib><title>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</title><title>Russian Journal of Physical Chemistry A</title><addtitle>Russ. J. Phys. Chem</addtitle><description>Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coupling</subject><subject>Electrons</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Parameters</subject><subject>Phonons</subject><subject>Physical Chemistry</subject><subject>Physical Chemistry of Nanoclusters and Nanomaterials</subject><subject>Seebeck effect</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><issn>0036-0244</issn><issn>1531-863X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9Gd_ROTo5TaCgULreAtJJvZNiXdjbvJwW_vxgoexNO8mfm9NzCE3AK7BxDyYcOYSBmXEnKmopRnZAJKQJKl4v2cTMZ1Mu4vyVUIB8ZkROWE4NwY1D11hi5dG3psLJ23ceKdTdZ7Z52lMzd0bWN3NOrtHv3R4TfRaLr2rkPfNxjGhEXZdVjThS-7PVqkm94Puh88XpMLU7YBb37qlLw9z7ezZbJ6XbzMnlaJFpD2SaVUKRjLa5EbqREqwQQXHLKM65TXBo2WRlVVxtLHXIlKITdV7Os65QA5iCm5O-V23n0MGPri4AZv48mCcwEyVZzlkYITpb0LwaMpOt8cS_9ZACvGbxZ_vhk9_OQJkbU79L_J_5u-APUPdsw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Parisa Zare</creator><creator>Rezania, H.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</title><author>Parisa Zare ; Rezania, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b55a3009d39f4ce1b3032321882c62dfefc4f5bb8067953b5e2fb5bbdd6211913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coupling</topic><topic>Electrons</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Parameters</topic><topic>Phonons</topic><topic>Physical Chemistry</topic><topic>Physical Chemistry of Nanoclusters and Nanomaterials</topic><topic>Seebeck effect</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parisa Zare</creatorcontrib><creatorcontrib>Rezania, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian Journal of Physical Chemistry A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parisa Zare</au><au>Rezania, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure</atitle><jtitle>Russian Journal of Physical Chemistry A</jtitle><stitle>Russ. J. Phys. Chem</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>93</volume><issue>5</issue><spage>909</spage><epage>916</epage><pages>909-916</pages><issn>0036-0244</issn><eissn>1531-863X</eissn><abstract>Thermal transport properties of gapped graphene structure taking into account the effects of interaction between electrons and Einstein phonons have been addressed. Specially we study the temperature dependence of thermal conductivity and thermopower of the structure. Green’s function method has been implemented to obtain transport coefficients of the system in the context of Holstein model Hamiltonian. We find numerical results for temperature dependence of thermal conductivity of gapped grapheme for different electron–Holstein phonon coupling strengths. Also the temperature behavior of Seebeck coefficient of gapped graphene structure due to electron–phonon interaction has been investigated. Moreover, we address the effect of gap parameter on temperature dependence of gapped graphene for finite gap parameter.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0036024419050364</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-0244 |
ispartof | Russian Journal of Physical Chemistry A, 2019-05, Vol.93 (5), p.909-916 |
issn | 0036-0244 1531-863X |
language | eng |
recordid | cdi_proquest_journals_2231465209 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemistry Chemistry and Materials Science Coupling Electrons Graphene Heat conductivity Heat transfer Parameters Phonons Physical Chemistry Physical Chemistry of Nanoclusters and Nanomaterials Seebeck effect Temperature Temperature dependence Thermal conductivity Transport properties |
title | Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A33%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Holstein%20Electron-Phonon%20Coupling%20on%20Thermoelectric%20Properties%20of%20Gapped%20Graphene%20Structure&rft.jtitle=Russian%20Journal%20of%20Physical%20Chemistry%20A&rft.au=Parisa%20Zare&rft.date=2019-05-01&rft.volume=93&rft.issue=5&rft.spage=909&rft.epage=916&rft.pages=909-916&rft.issn=0036-0244&rft.eissn=1531-863X&rft_id=info:doi/10.1134/S0036024419050364&rft_dat=%3Cproquest_cross%3E2231465209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231465209&rft_id=info:pmid/&rfr_iscdi=true |