The Best-or-Worst and the Postdoc problems with random number of candidates

In this paper we consider two variants of the Secretary problem: The Best-or-Worst and the Postdoc problems. We extend previous work by considering that the number of objects is not known and follows either a discrete Uniform distribution U [ 1 , n ] or a Poisson distribution P ( λ ) . We show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2019-07, Vol.38 (1), p.86-110
Hauptverfasser: Bayón, L., Fortuny, P., Grau, J., Oller-Marcén, A. M., Ruiz, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 1
container_start_page 86
container_title Journal of combinatorial optimization
container_volume 38
creator Bayón, L.
Fortuny, P.
Grau, J.
Oller-Marcén, A. M.
Ruiz, M. M.
description In this paper we consider two variants of the Secretary problem: The Best-or-Worst and the Postdoc problems. We extend previous work by considering that the number of objects is not known and follows either a discrete Uniform distribution U [ 1 , n ] or a Poisson distribution P ( λ ) . We show that in any case the optimal strategy is a threshold strategy, we provide the optimal cutoff values and the asymptotic probabilities of success. We also put our results in relation with closely related work.
doi_str_mv 10.1007/s10878-018-0367-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231461693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231461693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-bb2e2928ca3ca47e5ec430c58b5ad5f69c4861cd2bed549b7c2004eb33dd84d03</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0Xxv9qhFq1jQQ8VjyNfalu6mJinivzdlBU8ehnnMvDfzeABcEnxNMG5uMsGqUQiTWkw2SB6BCRENQ1QpeVwxUxTJFotTcJbzBmNcMZ-A5-UqwLuQC4oJvceUCzSDh6VOX2MuPjq4S9FuQ5_h17qsYKrr2MNh39uQYOygq4O1NyXkc3DSmW0OF799Ct4e7pezR7R4mT_NbhfIMSILspYG2lLlDHOGN0EExxl2QllhvOhk67iSxHlqgxe8tY2jGPNgGfNecY_ZFFyNd6uzz331rjdxn4b6UlPKCJdEtqyyyMhyKeacQqd3ad2b9K0J1ofM9JiZrpnpQ2ZaVg0dNblyh4-Q_i7_L_oBTMRu0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231461693</pqid></control><display><type>article</type><title>The Best-or-Worst and the Postdoc problems with random number of candidates</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bayón, L. ; Fortuny, P. ; Grau, J. ; Oller-Marcén, A. M. ; Ruiz, M. M.</creator><creatorcontrib>Bayón, L. ; Fortuny, P. ; Grau, J. ; Oller-Marcén, A. M. ; Ruiz, M. M.</creatorcontrib><description>In this paper we consider two variants of the Secretary problem: The Best-or-Worst and the Postdoc problems. We extend previous work by considering that the number of objects is not known and follows either a discrete Uniform distribution U [ 1 , n ] or a Poisson distribution P ( λ ) . We show that in any case the optimal strategy is a threshold strategy, we provide the optimal cutoff values and the asymptotic probabilities of success. We also put our results in relation with closely related work.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-018-0367-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Convex and Discrete Geometry ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Random numbers ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2019-07, Vol.38 (1), p.86-110</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-bb2e2928ca3ca47e5ec430c58b5ad5f69c4861cd2bed549b7c2004eb33dd84d03</citedby><cites>FETCH-LOGICAL-c316t-bb2e2928ca3ca47e5ec430c58b5ad5f69c4861cd2bed549b7c2004eb33dd84d03</cites><orcidid>0000-0002-8191-3199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-018-0367-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-018-0367-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bayón, L.</creatorcontrib><creatorcontrib>Fortuny, P.</creatorcontrib><creatorcontrib>Grau, J.</creatorcontrib><creatorcontrib>Oller-Marcén, A. M.</creatorcontrib><creatorcontrib>Ruiz, M. M.</creatorcontrib><title>The Best-or-Worst and the Postdoc problems with random number of candidates</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>In this paper we consider two variants of the Secretary problem: The Best-or-Worst and the Postdoc problems. We extend previous work by considering that the number of objects is not known and follows either a discrete Uniform distribution U [ 1 , n ] or a Poisson distribution P ( λ ) . We show that in any case the optimal strategy is a threshold strategy, we provide the optimal cutoff values and the asymptotic probabilities of success. We also put our results in relation with closely related work.</description><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Random numbers</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0Xxv9qhFq1jQQ8VjyNfalu6mJinivzdlBU8ehnnMvDfzeABcEnxNMG5uMsGqUQiTWkw2SB6BCRENQ1QpeVwxUxTJFotTcJbzBmNcMZ-A5-UqwLuQC4oJvceUCzSDh6VOX2MuPjq4S9FuQ5_h17qsYKrr2MNh39uQYOygq4O1NyXkc3DSmW0OF799Ct4e7pezR7R4mT_NbhfIMSILspYG2lLlDHOGN0EExxl2QllhvOhk67iSxHlqgxe8tY2jGPNgGfNecY_ZFFyNd6uzz331rjdxn4b6UlPKCJdEtqyyyMhyKeacQqd3ad2b9K0J1ofM9JiZrpnpQ2ZaVg0dNblyh4-Q_i7_L_oBTMRu0g</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Bayón, L.</creator><creator>Fortuny, P.</creator><creator>Grau, J.</creator><creator>Oller-Marcén, A. M.</creator><creator>Ruiz, M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8191-3199</orcidid></search><sort><creationdate>20190715</creationdate><title>The Best-or-Worst and the Postdoc problems with random number of candidates</title><author>Bayón, L. ; Fortuny, P. ; Grau, J. ; Oller-Marcén, A. M. ; Ruiz, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-bb2e2928ca3ca47e5ec430c58b5ad5f69c4861cd2bed549b7c2004eb33dd84d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Random numbers</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayón, L.</creatorcontrib><creatorcontrib>Fortuny, P.</creatorcontrib><creatorcontrib>Grau, J.</creatorcontrib><creatorcontrib>Oller-Marcén, A. M.</creatorcontrib><creatorcontrib>Ruiz, M. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayón, L.</au><au>Fortuny, P.</au><au>Grau, J.</au><au>Oller-Marcén, A. M.</au><au>Ruiz, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Best-or-Worst and the Postdoc problems with random number of candidates</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>38</volume><issue>1</issue><spage>86</spage><epage>110</epage><pages>86-110</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>In this paper we consider two variants of the Secretary problem: The Best-or-Worst and the Postdoc problems. We extend previous work by considering that the number of objects is not known and follows either a discrete Uniform distribution U [ 1 , n ] or a Poisson distribution P ( λ ) . We show that in any case the optimal strategy is a threshold strategy, we provide the optimal cutoff values and the asymptotic probabilities of success. We also put our results in relation with closely related work.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-018-0367-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8191-3199</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2019-07, Vol.38 (1), p.86-110
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2231461693
source SpringerLink Journals - AutoHoldings
subjects Combinatorics
Convex and Discrete Geometry
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Random numbers
Theory of Computation
title The Best-or-Worst and the Postdoc problems with random number of candidates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Best-or-Worst%20and%20the%20Postdoc%20problems%20with%20random%20number%20of%20candidates&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Bay%C3%B3n,%20L.&rft.date=2019-07-15&rft.volume=38&rft.issue=1&rft.spage=86&rft.epage=110&rft.pages=86-110&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-018-0367-6&rft_dat=%3Cproquest_cross%3E2231461693%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231461693&rft_id=info:pmid/&rfr_iscdi=true