Hierarchical NiO@N‐Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution

Achieving highly efficient hierarchical photocatalysts for hydrogen evolution is always challenging. Herein, hierarchical mesoporous NiO@N‐doped carbon microspheres (HNINC) are successfully fabricated with ultrathin nanosheet subunits as high‐performance photocatalysts for hydrogen evolution. The un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-05, Vol.15 (22), p.e1901024-n/a
Hauptverfasser: Zhan, Wenwen, Yuan, Yusheng, Sun, Liming, Yuan, Yaya, Han, Xiguang, Zhao, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e1901024
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Zhan, Wenwen
Yuan, Yusheng
Sun, Liming
Yuan, Yaya
Han, Xiguang
Zhao, Yanli
description Achieving highly efficient hierarchical photocatalysts for hydrogen evolution is always challenging. Herein, hierarchical mesoporous NiO@N‐doped carbon microspheres (HNINC) are successfully fabricated with ultrathin nanosheet subunits as high‐performance photocatalysts for hydrogen evolution. The unique architecture of N‐doped carbon layers and hierarchical mesoporous structures from HNINC could effectively facilitate the separation and transfer of photo‐induced electron–hole pairs and afford rich active sites for photocatalytic reactions, leading to a significantly higher H2 production rate than NiO deposited with platinum. Density functional theory calculations reveal that the migration path of the photo‐generated electron transfer is from Ni 3d and O 2p hybrid states of NiO to the C 2p state of graphite, while the photo‐generated holes locate at Ni 4s and Ni 4p hybrid states of NiO, which is beneficial to improve the separation of photo‐generated electron–hole pairs. Gibbs free energy of the intermediate state for hydrogen evolution reaction is calculated to provide a fundamental understanding of the high H2 production rate of HNINC. This research sheds light on developing novel photocatalysts for efficient hydrogen evolution. Hierarchical NiO@N‐doped carbon microspheres assembled by ultrathin nanosheets are developed by in situ decomposition of nickel complexes. The unique N‐doped carbon layer and hierarchical mesoporous structure effectively facilitate the separation and transfer of photo‐induced electron–hole pairs, affording rich active sites for excellent photocatalytic hydrogen production.
doi_str_mv 10.1002/smll.201901024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231426555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231426555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4124-f2d6584d5c9aedaaab8ed33bea954e71ac2939ad56ffd2fd4480f7d2215073e53</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0E4r1liSyxbvEjSZsdqBSKVAoSsI4m8YQYuXGxHUp3SPwA38iXkKpQlqw8ks-cmbmEHHHW5YyJUz81pisYTxlnItoguzzhspP0Rbq5rjnbIXvePzMmuYh622RHtnDCRbpLPkYaHbii0gUYOtG3Z5Ov988LO0NFB-ByW9MbXTjrZxU69HSuQ0UfTXAQKl3TCdTWV4iB3jd5U-vgKXg6fCvQGKwDvatssAUEMAvf_pXW0dFCOfuENR2-WtMEbesDslWC8Xj48-6Tx8vhw2DUGd9eXQ_Ox50iavfulEIlcT9ScZECKgDI-6ikzBHSOMIeh0KkMgUVJ2WpRKmiqM_KnhKCx6wnMZb75GTlnTn70qAP2bNtXN2OzISQPBJJHC-p7opaXu0dltnM6Sm4RcZZtsw8W2aerTNvG45_tE0-RbXGf0NugXQFzLXBxT-67P5mPP6TfwNcXJHt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231426555</pqid></control><display><type>article</type><title>Hierarchical NiO@N‐Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution</title><source>Wiley</source><creator>Zhan, Wenwen ; Yuan, Yusheng ; Sun, Liming ; Yuan, Yaya ; Han, Xiguang ; Zhao, Yanli</creator><creatorcontrib>Zhan, Wenwen ; Yuan, Yusheng ; Sun, Liming ; Yuan, Yaya ; Han, Xiguang ; Zhao, Yanli</creatorcontrib><description>Achieving highly efficient hierarchical photocatalysts for hydrogen evolution is always challenging. Herein, hierarchical mesoporous NiO@N‐doped carbon microspheres (HNINC) are successfully fabricated with ultrathin nanosheet subunits as high‐performance photocatalysts for hydrogen evolution. The unique architecture of N‐doped carbon layers and hierarchical mesoporous structures from HNINC could effectively facilitate the separation and transfer of photo‐induced electron–hole pairs and afford rich active sites for photocatalytic reactions, leading to a significantly higher H2 production rate than NiO deposited with platinum. Density functional theory calculations reveal that the migration path of the photo‐generated electron transfer is from Ni 3d and O 2p hybrid states of NiO to the C 2p state of graphite, while the photo‐generated holes locate at Ni 4s and Ni 4p hybrid states of NiO, which is beneficial to improve the separation of photo‐generated electron–hole pairs. Gibbs free energy of the intermediate state for hydrogen evolution reaction is calculated to provide a fundamental understanding of the high H2 production rate of HNINC. This research sheds light on developing novel photocatalysts for efficient hydrogen evolution. Hierarchical NiO@N‐doped carbon microspheres assembled by ultrathin nanosheets are developed by in situ decomposition of nickel complexes. The unique N‐doped carbon layer and hierarchical mesoporous structure effectively facilitate the separation and transfer of photo‐induced electron–hole pairs, affording rich active sites for excellent photocatalytic hydrogen production.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201901024</identifier><identifier>PMID: 31026129</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Carbon ; Density functional theory ; Electron transfer ; Electrons ; Gibbs free energy ; hierarchical porous nanostructures ; Hydrogen ; hydrogen evolution ; Hydrogen evolution reactions ; Hydrogen production ; Mathematical analysis ; Microspheres ; Migration ; Nanosheets ; Nanotechnology ; Nickel oxides ; N‐doped carbon layers ; Photocatalysis ; Photocatalysts ; Platinum ; Separation ; Structural hierarchy ; ultrathin nanosheets</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-05, Vol.15 (22), p.e1901024-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4124-f2d6584d5c9aedaaab8ed33bea954e71ac2939ad56ffd2fd4480f7d2215073e53</citedby><cites>FETCH-LOGICAL-c4124-f2d6584d5c9aedaaab8ed33bea954e71ac2939ad56ffd2fd4480f7d2215073e53</cites><orcidid>0000-0002-9231-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201901024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201901024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31026129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhan, Wenwen</creatorcontrib><creatorcontrib>Yuan, Yusheng</creatorcontrib><creatorcontrib>Sun, Liming</creatorcontrib><creatorcontrib>Yuan, Yaya</creatorcontrib><creatorcontrib>Han, Xiguang</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><title>Hierarchical NiO@N‐Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Achieving highly efficient hierarchical photocatalysts for hydrogen evolution is always challenging. Herein, hierarchical mesoporous NiO@N‐doped carbon microspheres (HNINC) are successfully fabricated with ultrathin nanosheet subunits as high‐performance photocatalysts for hydrogen evolution. The unique architecture of N‐doped carbon layers and hierarchical mesoporous structures from HNINC could effectively facilitate the separation and transfer of photo‐induced electron–hole pairs and afford rich active sites for photocatalytic reactions, leading to a significantly higher H2 production rate than NiO deposited with platinum. Density functional theory calculations reveal that the migration path of the photo‐generated electron transfer is from Ni 3d and O 2p hybrid states of NiO to the C 2p state of graphite, while the photo‐generated holes locate at Ni 4s and Ni 4p hybrid states of NiO, which is beneficial to improve the separation of photo‐generated electron–hole pairs. Gibbs free energy of the intermediate state for hydrogen evolution reaction is calculated to provide a fundamental understanding of the high H2 production rate of HNINC. This research sheds light on developing novel photocatalysts for efficient hydrogen evolution. Hierarchical NiO@N‐doped carbon microspheres assembled by ultrathin nanosheets are developed by in situ decomposition of nickel complexes. The unique N‐doped carbon layer and hierarchical mesoporous structure effectively facilitate the separation and transfer of photo‐induced electron–hole pairs, affording rich active sites for excellent photocatalytic hydrogen production.</description><subject>Aluminum</subject><subject>Carbon</subject><subject>Density functional theory</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Gibbs free energy</subject><subject>hierarchical porous nanostructures</subject><subject>Hydrogen</subject><subject>hydrogen evolution</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Mathematical analysis</subject><subject>Microspheres</subject><subject>Migration</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nickel oxides</subject><subject>N‐doped carbon layers</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Platinum</subject><subject>Separation</subject><subject>Structural hierarchy</subject><subject>ultrathin nanosheets</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0E4r1liSyxbvEjSZsdqBSKVAoSsI4m8YQYuXGxHUp3SPwA38iXkKpQlqw8ks-cmbmEHHHW5YyJUz81pisYTxlnItoguzzhspP0Rbq5rjnbIXvePzMmuYh622RHtnDCRbpLPkYaHbii0gUYOtG3Z5Ov988LO0NFB-ByW9MbXTjrZxU69HSuQ0UfTXAQKl3TCdTWV4iB3jd5U-vgKXg6fCvQGKwDvatssAUEMAvf_pXW0dFCOfuENR2-WtMEbesDslWC8Xj48-6Tx8vhw2DUGd9eXQ_Ox50iavfulEIlcT9ScZECKgDI-6ikzBHSOMIeh0KkMgUVJ2WpRKmiqM_KnhKCx6wnMZb75GTlnTn70qAP2bNtXN2OzISQPBJJHC-p7opaXu0dltnM6Sm4RcZZtsw8W2aerTNvG45_tE0-RbXGf0NugXQFzLXBxT-67P5mPP6TfwNcXJHt</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zhan, Wenwen</creator><creator>Yuan, Yusheng</creator><creator>Sun, Liming</creator><creator>Yuan, Yaya</creator><creator>Han, Xiguang</creator><creator>Zhao, Yanli</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></search><sort><creationdate>20190501</creationdate><title>Hierarchical NiO@N‐Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution</title><author>Zhan, Wenwen ; Yuan, Yusheng ; Sun, Liming ; Yuan, Yaya ; Han, Xiguang ; Zhao, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4124-f2d6584d5c9aedaaab8ed33bea954e71ac2939ad56ffd2fd4480f7d2215073e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Carbon</topic><topic>Density functional theory</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Gibbs free energy</topic><topic>hierarchical porous nanostructures</topic><topic>Hydrogen</topic><topic>hydrogen evolution</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Mathematical analysis</topic><topic>Microspheres</topic><topic>Migration</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nickel oxides</topic><topic>N‐doped carbon layers</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Platinum</topic><topic>Separation</topic><topic>Structural hierarchy</topic><topic>ultrathin nanosheets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Wenwen</creatorcontrib><creatorcontrib>Yuan, Yusheng</creatorcontrib><creatorcontrib>Sun, Liming</creatorcontrib><creatorcontrib>Yuan, Yaya</creatorcontrib><creatorcontrib>Han, Xiguang</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Wenwen</au><au>Yuan, Yusheng</au><au>Sun, Liming</au><au>Yuan, Yaya</au><au>Han, Xiguang</au><au>Zhao, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical NiO@N‐Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>15</volume><issue>22</issue><spage>e1901024</spage><epage>n/a</epage><pages>e1901024-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Achieving highly efficient hierarchical photocatalysts for hydrogen evolution is always challenging. Herein, hierarchical mesoporous NiO@N‐doped carbon microspheres (HNINC) are successfully fabricated with ultrathin nanosheet subunits as high‐performance photocatalysts for hydrogen evolution. The unique architecture of N‐doped carbon layers and hierarchical mesoporous structures from HNINC could effectively facilitate the separation and transfer of photo‐induced electron–hole pairs and afford rich active sites for photocatalytic reactions, leading to a significantly higher H2 production rate than NiO deposited with platinum. Density functional theory calculations reveal that the migration path of the photo‐generated electron transfer is from Ni 3d and O 2p hybrid states of NiO to the C 2p state of graphite, while the photo‐generated holes locate at Ni 4s and Ni 4p hybrid states of NiO, which is beneficial to improve the separation of photo‐generated electron–hole pairs. Gibbs free energy of the intermediate state for hydrogen evolution reaction is calculated to provide a fundamental understanding of the high H2 production rate of HNINC. This research sheds light on developing novel photocatalysts for efficient hydrogen evolution. Hierarchical NiO@N‐doped carbon microspheres assembled by ultrathin nanosheets are developed by in situ decomposition of nickel complexes. The unique N‐doped carbon layer and hierarchical mesoporous structure effectively facilitate the separation and transfer of photo‐induced electron–hole pairs, affording rich active sites for excellent photocatalytic hydrogen production.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31026129</pmid><doi>10.1002/smll.201901024</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-05, Vol.15 (22), p.e1901024-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2231426555
source Wiley
subjects Aluminum
Carbon
Density functional theory
Electron transfer
Electrons
Gibbs free energy
hierarchical porous nanostructures
Hydrogen
hydrogen evolution
Hydrogen evolution reactions
Hydrogen production
Mathematical analysis
Microspheres
Migration
Nanosheets
Nanotechnology
Nickel oxides
N‐doped carbon layers
Photocatalysis
Photocatalysts
Platinum
Separation
Structural hierarchy
ultrathin nanosheets
title Hierarchical NiO@N‐Doped Carbon Microspheres with Ultrathin Nanosheet Subunits as Excellent Photocatalysts for Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20NiO@N%E2%80%90Doped%20Carbon%20Microspheres%20with%20Ultrathin%20Nanosheet%20Subunits%20as%20Excellent%20Photocatalysts%20for%20Hydrogen%20Evolution&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhan,%20Wenwen&rft.date=2019-05-01&rft.volume=15&rft.issue=22&rft.spage=e1901024&rft.epage=n/a&rft.pages=e1901024-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201901024&rft_dat=%3Cproquest_cross%3E2231426555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231426555&rft_id=info:pmid/31026129&rfr_iscdi=true