Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods

Pressurized oxy-fuel combustion is a promising oxy-fuel technology owing to its high efficiency and low emission. The ignition delay times of ethane under O2/CO2 atmosphere were determined in a shock tube at different pressures, equivalence ratios, and C2H6 and CO2 concentrations. The results sugges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2019-06, Vol.204, p.380-390
Hauptverfasser: Liu, Yang, Cheng, Jia, Zou, Chun, Lu, Lixin, Jing, Huixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue
container_start_page 380
container_title Combustion and flame
container_volume 204
creator Liu, Yang
Cheng, Jia
Zou, Chun
Lu, Lixin
Jing, Huixiang
description Pressurized oxy-fuel combustion is a promising oxy-fuel technology owing to its high efficiency and low emission. The ignition delay times of ethane under O2/CO2 atmosphere were determined in a shock tube at different pressures, equivalence ratios, and C2H6 and CO2 concentrations. The results suggested that the ignition delay times decrease with the increasing ethane concentration at 0.8, 2.0, and 10 bar, while the effect of the fuel concentration on the ignition delay times is not sensitive to the pressure. The ignition delay times increased with the increasing equivalence ratio at 0.8 and 2.0 bar, while the effect of the equivalence ratio decreased with the increasing pressure from 0.8 to 2.0 bar. At 10 bar, the effect of the equivalence ratio on the ignition delay times further weakened at high temperatures, while the ignition delay times decreased with the increasing equivalence ratio in the low-temperature range. An updated model (OXYMECH) was developed and updated on the basis of our previous work, providing yields in good agreement with the experimental data under all conditions, while Aramco 2.0 showed poor prediction of the experimental results at 10 bar. Analysis of the sensitivity and the rate of production indicated that updating the rate constants of the reactions C2H6 + HO2 ⇔ C2H5 + H2O2, H + O2 (+M) ⇔ HO2 (+M), CH3 + HO2 ⇔ CH3O + OH, 2HO2 ⇔ H2O2 + O2, C2H4 + H (+M) ⇔ C2H5 (+M), and H + O2 ⇔ O + OH improves the performance at 10 bar.
doi_str_mv 10.1016/j.combustflame.2019.03.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231413742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218019301336</els_id><sourcerecordid>2231413742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-cb4cede193e0efe92cf14c8f110d2c1df58e6aba19450df19e3ce7ea00912d193</originalsourceid><addsrcrecordid>eNqNUMlOAzEMjRBIlOUfIjhPsZPpMtxQWSWkXuAcZRKHpnQmJckg9e8JlANHJMv24S32Y-wCYYyA06v12ISuHVJ2G93RWAA2Y5Cl8ICNcDKZVqIReMhGAAiVwDkcs5OU1gAwq6Ucsfj01vvsQ88tbfSOZ99R4sFxyivdEx96S5EvxdViKbjOXUjbFUUqK7feubL2mW8jpTSUxtsdT6tg3nke2gLqLU--Gzb6x6ErmsGmM3bk9CbR-e88Za_3dy-Lx-p5-fC0uHmujIQ6V6atDVnCRhKQo0YYh7WZO0SwwqB1kzlNdauxqSdgHTYkDc1IAzQobKGdssu97jaGj4FSVuswxL5YKiEk1ihntSio6z3KxJBSJKe20Xc67hSC-s5YrdXfjNV3xgpkKSzk2z2Zyh-fnqJKxlNf7vaRTFY2-P_IfAH5g45a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231413742</pqid></control><display><type>article</type><title>Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Yang ; Cheng, Jia ; Zou, Chun ; Lu, Lixin ; Jing, Huixiang</creator><creatorcontrib>Liu, Yang ; Cheng, Jia ; Zou, Chun ; Lu, Lixin ; Jing, Huixiang</creatorcontrib><description>Pressurized oxy-fuel combustion is a promising oxy-fuel technology owing to its high efficiency and low emission. The ignition delay times of ethane under O2/CO2 atmosphere were determined in a shock tube at different pressures, equivalence ratios, and C2H6 and CO2 concentrations. The results suggested that the ignition delay times decrease with the increasing ethane concentration at 0.8, 2.0, and 10 bar, while the effect of the fuel concentration on the ignition delay times is not sensitive to the pressure. The ignition delay times increased with the increasing equivalence ratio at 0.8 and 2.0 bar, while the effect of the equivalence ratio decreased with the increasing pressure from 0.8 to 2.0 bar. At 10 bar, the effect of the equivalence ratio on the ignition delay times further weakened at high temperatures, while the ignition delay times decreased with the increasing equivalence ratio in the low-temperature range. An updated model (OXYMECH) was developed and updated on the basis of our previous work, providing yields in good agreement with the experimental data under all conditions, while Aramco 2.0 showed poor prediction of the experimental results at 10 bar. Analysis of the sensitivity and the rate of production indicated that updating the rate constants of the reactions C2H6 + HO2 ⇔ C2H5 + H2O2, H + O2 (+M) ⇔ HO2 (+M), CH3 + HO2 ⇔ CH3O + OH, 2HO2 ⇔ H2O2 + O2, C2H4 + H (+M) ⇔ C2H5 (+M), and H + O2 ⇔ O + OH improves the performance at 10 bar.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2019.03.031</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Carbon dioxide ; Computer simulation ; Delay time ; Equivalence ratio ; Ethane ; Fuel combustion ; Hydrogen peroxide ; Ignition ; Ignition delay time ; Model evaluation ; O2/CO2 atmosphere ; Optimized model ; Oxy-fuel ; Performance enhancement ; Production increases ; Rate constants ; Sensitivity analysis</subject><ispartof>Combustion and flame, 2019-06, Vol.204, p.380-390</ispartof><rights>2019 The Combustion Institute</rights><rights>Copyright Elsevier BV Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-cb4cede193e0efe92cf14c8f110d2c1df58e6aba19450df19e3ce7ea00912d193</citedby><cites>FETCH-LOGICAL-c304t-cb4cede193e0efe92cf14c8f110d2c1df58e6aba19450df19e3ce7ea00912d193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2019.03.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Cheng, Jia</creatorcontrib><creatorcontrib>Zou, Chun</creatorcontrib><creatorcontrib>Lu, Lixin</creatorcontrib><creatorcontrib>Jing, Huixiang</creatorcontrib><title>Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods</title><title>Combustion and flame</title><description>Pressurized oxy-fuel combustion is a promising oxy-fuel technology owing to its high efficiency and low emission. The ignition delay times of ethane under O2/CO2 atmosphere were determined in a shock tube at different pressures, equivalence ratios, and C2H6 and CO2 concentrations. The results suggested that the ignition delay times decrease with the increasing ethane concentration at 0.8, 2.0, and 10 bar, while the effect of the fuel concentration on the ignition delay times is not sensitive to the pressure. The ignition delay times increased with the increasing equivalence ratio at 0.8 and 2.0 bar, while the effect of the equivalence ratio decreased with the increasing pressure from 0.8 to 2.0 bar. At 10 bar, the effect of the equivalence ratio on the ignition delay times further weakened at high temperatures, while the ignition delay times decreased with the increasing equivalence ratio in the low-temperature range. An updated model (OXYMECH) was developed and updated on the basis of our previous work, providing yields in good agreement with the experimental data under all conditions, while Aramco 2.0 showed poor prediction of the experimental results at 10 bar. Analysis of the sensitivity and the rate of production indicated that updating the rate constants of the reactions C2H6 + HO2 ⇔ C2H5 + H2O2, H + O2 (+M) ⇔ HO2 (+M), CH3 + HO2 ⇔ CH3O + OH, 2HO2 ⇔ H2O2 + O2, C2H4 + H (+M) ⇔ C2H5 (+M), and H + O2 ⇔ O + OH improves the performance at 10 bar.</description><subject>Carbon dioxide</subject><subject>Computer simulation</subject><subject>Delay time</subject><subject>Equivalence ratio</subject><subject>Ethane</subject><subject>Fuel combustion</subject><subject>Hydrogen peroxide</subject><subject>Ignition</subject><subject>Ignition delay time</subject><subject>Model evaluation</subject><subject>O2/CO2 atmosphere</subject><subject>Optimized model</subject><subject>Oxy-fuel</subject><subject>Performance enhancement</subject><subject>Production increases</subject><subject>Rate constants</subject><subject>Sensitivity analysis</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOAzEMjRBIlOUfIjhPsZPpMtxQWSWkXuAcZRKHpnQmJckg9e8JlANHJMv24S32Y-wCYYyA06v12ISuHVJ2G93RWAA2Y5Cl8ICNcDKZVqIReMhGAAiVwDkcs5OU1gAwq6Ucsfj01vvsQ88tbfSOZ99R4sFxyivdEx96S5EvxdViKbjOXUjbFUUqK7feubL2mW8jpTSUxtsdT6tg3nke2gLqLU--Gzb6x6ErmsGmM3bk9CbR-e88Za_3dy-Lx-p5-fC0uHmujIQ6V6atDVnCRhKQo0YYh7WZO0SwwqB1kzlNdauxqSdgHTYkDc1IAzQobKGdssu97jaGj4FSVuswxL5YKiEk1ihntSio6z3KxJBSJKe20Xc67hSC-s5YrdXfjNV3xgpkKSzk2z2Zyh-fnqJKxlNf7vaRTFY2-P_IfAH5g45a</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Liu, Yang</creator><creator>Cheng, Jia</creator><creator>Zou, Chun</creator><creator>Lu, Lixin</creator><creator>Jing, Huixiang</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190601</creationdate><title>Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods</title><author>Liu, Yang ; Cheng, Jia ; Zou, Chun ; Lu, Lixin ; Jing, Huixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-cb4cede193e0efe92cf14c8f110d2c1df58e6aba19450df19e3ce7ea00912d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>Computer simulation</topic><topic>Delay time</topic><topic>Equivalence ratio</topic><topic>Ethane</topic><topic>Fuel combustion</topic><topic>Hydrogen peroxide</topic><topic>Ignition</topic><topic>Ignition delay time</topic><topic>Model evaluation</topic><topic>O2/CO2 atmosphere</topic><topic>Optimized model</topic><topic>Oxy-fuel</topic><topic>Performance enhancement</topic><topic>Production increases</topic><topic>Rate constants</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Cheng, Jia</creatorcontrib><creatorcontrib>Zou, Chun</creatorcontrib><creatorcontrib>Lu, Lixin</creatorcontrib><creatorcontrib>Jing, Huixiang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Cheng, Jia</au><au>Zou, Chun</au><au>Lu, Lixin</au><au>Jing, Huixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods</atitle><jtitle>Combustion and flame</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>204</volume><spage>380</spage><epage>390</epage><pages>380-390</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Pressurized oxy-fuel combustion is a promising oxy-fuel technology owing to its high efficiency and low emission. The ignition delay times of ethane under O2/CO2 atmosphere were determined in a shock tube at different pressures, equivalence ratios, and C2H6 and CO2 concentrations. The results suggested that the ignition delay times decrease with the increasing ethane concentration at 0.8, 2.0, and 10 bar, while the effect of the fuel concentration on the ignition delay times is not sensitive to the pressure. The ignition delay times increased with the increasing equivalence ratio at 0.8 and 2.0 bar, while the effect of the equivalence ratio decreased with the increasing pressure from 0.8 to 2.0 bar. At 10 bar, the effect of the equivalence ratio on the ignition delay times further weakened at high temperatures, while the ignition delay times decreased with the increasing equivalence ratio in the low-temperature range. An updated model (OXYMECH) was developed and updated on the basis of our previous work, providing yields in good agreement with the experimental data under all conditions, while Aramco 2.0 showed poor prediction of the experimental results at 10 bar. Analysis of the sensitivity and the rate of production indicated that updating the rate constants of the reactions C2H6 + HO2 ⇔ C2H5 + H2O2, H + O2 (+M) ⇔ HO2 (+M), CH3 + HO2 ⇔ CH3O + OH, 2HO2 ⇔ H2O2 + O2, C2H4 + H (+M) ⇔ C2H5 (+M), and H + O2 ⇔ O + OH improves the performance at 10 bar.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2019.03.031</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2019-06, Vol.204, p.380-390
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2231413742
source Access via ScienceDirect (Elsevier)
subjects Carbon dioxide
Computer simulation
Delay time
Equivalence ratio
Ethane
Fuel combustion
Hydrogen peroxide
Ignition
Ignition delay time
Model evaluation
O2/CO2 atmosphere
Optimized model
Oxy-fuel
Performance enhancement
Production increases
Rate constants
Sensitivity analysis
title Ignition delay times of ethane under O2/CO2 atmosphere at different pressures by shock tube and simulation methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ignition%20delay%20times%20of%20ethane%20under%20O2/CO2%20atmosphere%20at%20different%20pressures%20by%20shock%20tube%20and%20simulation%20methods&rft.jtitle=Combustion%20and%20flame&rft.au=Liu,%20Yang&rft.date=2019-06-01&rft.volume=204&rft.spage=380&rft.epage=390&rft.pages=380-390&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2019.03.031&rft_dat=%3Cproquest_cross%3E2231413742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231413742&rft_id=info:pmid/&rft_els_id=S0010218019301336&rfr_iscdi=true