26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers

In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SID International Symposium Digest of technical papers 2019-06, Vol.50 (1), p.356-359
Hauptverfasser: Will, Paul-Anton, Lenk, Simone, Reineke, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 1
container_start_page 356
container_title SID International Symposium Digest of technical papers
container_volume 50
creator Will, Paul-Anton
Lenk, Simone
Reineke, Sebastian
description In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies.
doi_str_mv 10.1002/sdtp.12930
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231407194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231407194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1050-9083c5cd68fc324895a870e8397c7e24d2f91f8ebf9b2c64c7509df31805cda53</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbnyDgTph6k8xfuiv9szDQgi24G9JMpk1JZ2qSVroTfAGf0Sdxal27OnDvd869HITuCXQIAH1yhd91COUMLlCLkjgNgET8ErUAeBLwOH69RjfObQAYC0PeQp80_v74Il08qQ7aqwLPxE7ZLp6vld0KY464J70-iNNqoIw4Njoy-9oqJ1UlFZ7alai0xJlerX0TNdxq73W1wgNdF8rhfr3dWe1Ok4XxVjgvlkbhsRHO4azJs-4WXZXCOHX3p220GA3n_ecgm44n_V4WSAIRBBxSJiNZxGkpGQ1THok0AZUynshE0bCgJSdlqpYlX1IZhzKJgBclIyk0LhGxNno45-5s_bZXzuebem-r5mROKSMhJISHDfV4pqStnbOqzJv_t8IecwL5qeT8VHL-W3IDkzP8ro06_kPmL4P57Oz5ATdGgfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231407194</pqid></control><display><type>article</type><title>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</title><source>Access via Wiley Online Library</source><creator>Will, Paul-Anton ; Lenk, Simone ; Reineke, Sebastian</creator><creatorcontrib>Will, Paul-Anton ; Lenk, Simone ; Reineke, Sebastian</creatorcontrib><description>In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.12930</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Diodes ; Emitters ; Energy transfer ; Fluorescence ; Glass substrates ; Glass transition temperature ; Morphology ; Organic chemistry ; Organic light emitting diodes ; Organic light-emitting diode ; Phosphorescence ; Quantum efficiency ; Service life assessment ; thermally activated delayed fluorescence ; ultrastable glass</subject><ispartof>SID International Symposium Digest of technical papers, 2019-06, Vol.50 (1), p.356-359</ispartof><rights>2019 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1050-9083c5cd68fc324895a870e8397c7e24d2f91f8ebf9b2c64c7509df31805cda53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.12930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.12930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Will, Paul-Anton</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><title>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</title><title>SID International Symposium Digest of technical papers</title><description>In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies.</description><subject>Charge transport</subject><subject>Diodes</subject><subject>Emitters</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Glass substrates</subject><subject>Glass transition temperature</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Organic light emitting diodes</subject><subject>Organic light-emitting diode</subject><subject>Phosphorescence</subject><subject>Quantum efficiency</subject><subject>Service life assessment</subject><subject>thermally activated delayed fluorescence</subject><subject>ultrastable glass</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsbnyDgTph6k8xfuiv9szDQgi24G9JMpk1JZ2qSVroTfAGf0Sdxal27OnDvd869HITuCXQIAH1yhd91COUMLlCLkjgNgET8ErUAeBLwOH69RjfObQAYC0PeQp80_v74Il08qQ7aqwLPxE7ZLp6vld0KY464J70-iNNqoIw4Njoy-9oqJ1UlFZ7alai0xJlerX0TNdxq73W1wgNdF8rhfr3dWe1Ok4XxVjgvlkbhsRHO4azJs-4WXZXCOHX3p220GA3n_ecgm44n_V4WSAIRBBxSJiNZxGkpGQ1THok0AZUynshE0bCgJSdlqpYlX1IZhzKJgBclIyk0LhGxNno45-5s_bZXzuebem-r5mROKSMhJISHDfV4pqStnbOqzJv_t8IecwL5qeT8VHL-W3IDkzP8ro06_kPmL4P57Oz5ATdGgfA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Will, Paul-Anton</creator><creator>Lenk, Simone</creator><creator>Reineke, Sebastian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201906</creationdate><title>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</title><author>Will, Paul-Anton ; Lenk, Simone ; Reineke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1050-9083c5cd68fc324895a870e8397c7e24d2f91f8ebf9b2c64c7509df31805cda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transport</topic><topic>Diodes</topic><topic>Emitters</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Glass substrates</topic><topic>Glass transition temperature</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Organic light emitting diodes</topic><topic>Organic light-emitting diode</topic><topic>Phosphorescence</topic><topic>Quantum efficiency</topic><topic>Service life assessment</topic><topic>thermally activated delayed fluorescence</topic><topic>ultrastable glass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Will, Paul-Anton</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Will, Paul-Anton</au><au>Lenk, Simone</au><au>Reineke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2019-06</date><risdate>2019</risdate><volume>50</volume><issue>1</issue><spage>356</spage><epage>359</epage><pages>356-359</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.12930</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-966X
ispartof SID International Symposium Digest of technical papers, 2019-06, Vol.50 (1), p.356-359
issn 0097-966X
2168-0159
language eng
recordid cdi_proquest_journals_2231407194
source Access via Wiley Online Library
subjects Charge transport
Diodes
Emitters
Energy transfer
Fluorescence
Glass substrates
Glass transition temperature
Morphology
Organic chemistry
Organic light emitting diodes
Organic light-emitting diode
Phosphorescence
Quantum efficiency
Service life assessment
thermally activated delayed fluorescence
ultrastable glass
title 26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=26%E2%80%901:%20Invited%20Paper:%20Thermally%20Activated%20Delayed%20Fluorescence%20Organic%20Light%E2%80%90Emitting%20Diodes%20Comprising%20Ultrastable%20Glass%20Layers&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Will,%20Paul-Anton&rft.date=2019-06&rft.volume=50&rft.issue=1&rft.spage=356&rft.epage=359&rft.pages=356-359&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.12930&rft_dat=%3Cproquest_cross%3E2231407194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231407194&rft_id=info:pmid/&rfr_iscdi=true