26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers
In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the m...
Gespeichert in:
Veröffentlicht in: | SID International Symposium Digest of technical papers 2019-06, Vol.50 (1), p.356-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 1 |
container_start_page | 356 |
container_title | SID International Symposium Digest of technical papers |
container_volume | 50 |
creator | Will, Paul-Anton Lenk, Simone Reineke, Sebastian |
description | In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies. |
doi_str_mv | 10.1002/sdtp.12930 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2231407194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2231407194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1050-9083c5cd68fc324895a870e8397c7e24d2f91f8ebf9b2c64c7509df31805cda53</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbnyDgTph6k8xfuiv9szDQgi24G9JMpk1JZ2qSVroTfAGf0Sdxal27OnDvd869HITuCXQIAH1yhd91COUMLlCLkjgNgET8ErUAeBLwOH69RjfObQAYC0PeQp80_v74Il08qQ7aqwLPxE7ZLp6vld0KY464J70-iNNqoIw4Njoy-9oqJ1UlFZ7alai0xJlerX0TNdxq73W1wgNdF8rhfr3dWe1Ok4XxVjgvlkbhsRHO4azJs-4WXZXCOHX3p220GA3n_ecgm44n_V4WSAIRBBxSJiNZxGkpGQ1THok0AZUynshE0bCgJSdlqpYlX1IZhzKJgBclIyk0LhGxNno45-5s_bZXzuebem-r5mROKSMhJISHDfV4pqStnbOqzJv_t8IecwL5qeT8VHL-W3IDkzP8ro06_kPmL4P57Oz5ATdGgfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2231407194</pqid></control><display><type>article</type><title>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</title><source>Access via Wiley Online Library</source><creator>Will, Paul-Anton ; Lenk, Simone ; Reineke, Sebastian</creator><creatorcontrib>Will, Paul-Anton ; Lenk, Simone ; Reineke, Sebastian</creatorcontrib><description>In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.12930</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Diodes ; Emitters ; Energy transfer ; Fluorescence ; Glass substrates ; Glass transition temperature ; Morphology ; Organic chemistry ; Organic light emitting diodes ; Organic light-emitting diode ; Phosphorescence ; Quantum efficiency ; Service life assessment ; thermally activated delayed fluorescence ; ultrastable glass</subject><ispartof>SID International Symposium Digest of technical papers, 2019-06, Vol.50 (1), p.356-359</ispartof><rights>2019 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1050-9083c5cd68fc324895a870e8397c7e24d2f91f8ebf9b2c64c7509df31805cda53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.12930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.12930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Will, Paul-Anton</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><title>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</title><title>SID International Symposium Digest of technical papers</title><description>In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies.</description><subject>Charge transport</subject><subject>Diodes</subject><subject>Emitters</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Glass substrates</subject><subject>Glass transition temperature</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>Organic light emitting diodes</subject><subject>Organic light-emitting diode</subject><subject>Phosphorescence</subject><subject>Quantum efficiency</subject><subject>Service life assessment</subject><subject>thermally activated delayed fluorescence</subject><subject>ultrastable glass</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsbnyDgTph6k8xfuiv9szDQgi24G9JMpk1JZ2qSVroTfAGf0Sdxal27OnDvd869HITuCXQIAH1yhd91COUMLlCLkjgNgET8ErUAeBLwOH69RjfObQAYC0PeQp80_v74Il08qQ7aqwLPxE7ZLp6vld0KY464J70-iNNqoIw4Njoy-9oqJ1UlFZ7alai0xJlerX0TNdxq73W1wgNdF8rhfr3dWe1Ok4XxVjgvlkbhsRHO4azJs-4WXZXCOHX3p220GA3n_ecgm44n_V4WSAIRBBxSJiNZxGkpGQ1THok0AZUynshE0bCgJSdlqpYlX1IZhzKJgBclIyk0LhGxNno45-5s_bZXzuebem-r5mROKSMhJISHDfV4pqStnbOqzJv_t8IecwL5qeT8VHL-W3IDkzP8ro06_kPmL4P57Oz5ATdGgfA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Will, Paul-Anton</creator><creator>Lenk, Simone</creator><creator>Reineke, Sebastian</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201906</creationdate><title>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</title><author>Will, Paul-Anton ; Lenk, Simone ; Reineke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1050-9083c5cd68fc324895a870e8397c7e24d2f91f8ebf9b2c64c7509df31805cda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transport</topic><topic>Diodes</topic><topic>Emitters</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Glass substrates</topic><topic>Glass transition temperature</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>Organic light emitting diodes</topic><topic>Organic light-emitting diode</topic><topic>Phosphorescence</topic><topic>Quantum efficiency</topic><topic>Service life assessment</topic><topic>thermally activated delayed fluorescence</topic><topic>ultrastable glass</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Will, Paul-Anton</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Will, Paul-Anton</au><au>Lenk, Simone</au><au>Reineke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2019-06</date><risdate>2019</risdate><volume>50</volume><issue>1</issue><spage>356</spage><epage>359</epage><pages>356-359</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>In our previous work, we investigated the effects of the formation of ultrastable glasses within monochrome phosphorescent organic light‐emitting diodes.1 The ultrastable glasses are fabricated by heating the glass substrate to about 85% of the glass transition temperature while evaporation of the material. We observed significant enhancements of the external quantum efficiency (in the range of 20%) and device lifetime (up to 4x). These improvements are attributed to a denser packaging of the organic molecules resulting in reduced non‐radiative rates of the emitters. The change in the nano‐morphology can also have impact on the charge transport, the radiative rates of the emitter, and emitter orientation. For those properties, we have not identified a significant impact on the device performance. In this paper, we apply our concept to a green thermally activated delayed fluorescent emitter in a proof of principle device series. We find that insufficient energy transfer to the emitter holds back our devices from achieving state‐of‐the‐art efficiencies.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.12930</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-966X |
ispartof | SID International Symposium Digest of technical papers, 2019-06, Vol.50 (1), p.356-359 |
issn | 0097-966X 2168-0159 |
language | eng |
recordid | cdi_proquest_journals_2231407194 |
source | Access via Wiley Online Library |
subjects | Charge transport Diodes Emitters Energy transfer Fluorescence Glass substrates Glass transition temperature Morphology Organic chemistry Organic light emitting diodes Organic light-emitting diode Phosphorescence Quantum efficiency Service life assessment thermally activated delayed fluorescence ultrastable glass |
title | 26‐1: Invited Paper: Thermally Activated Delayed Fluorescence Organic Light‐Emitting Diodes Comprising Ultrastable Glass Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=26%E2%80%901:%20Invited%20Paper:%20Thermally%20Activated%20Delayed%20Fluorescence%20Organic%20Light%E2%80%90Emitting%20Diodes%20Comprising%20Ultrastable%20Glass%20Layers&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Will,%20Paul-Anton&rft.date=2019-06&rft.volume=50&rft.issue=1&rft.spage=356&rft.epage=359&rft.pages=356-359&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.12930&rft_dat=%3Cproquest_cross%3E2231407194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2231407194&rft_id=info:pmid/&rfr_iscdi=true |