Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering
Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2019-04, Vol.890, p.290-300 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | |
container_start_page | 290 |
container_title | Applied Mechanics and Materials |
container_volume | 890 |
creator | Lopes, João Fonseca, Ana Rita Viana, Tânia Fernandes, Cristiana Henriques Morouço, Pedro Monteiro de Moura, Carla Sofia Biscaia, Sara |
description | Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency.
Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention. |
doi_str_mv | 10.4028/www.scientific.net/AMM.890.290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230874619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230874619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0oEqX0P0QgITgkHX_EcS6oZdl-SK3gsHfLcSa7rrLxYntZhV-PyyL12tNoNO88r_QQ8olCJYCpi8PhUEXrcEpucLaaMF1cPTxUqoWKtfCKnFIpWdkIxV6T87ZRHHjdUCa4Ovl3g7LlXL4l72J8BJCCCnVK1ouNCcYmDO6PSc5PhR-Kb85bv93lvRux-OnH-fMybeYRJyxuxtn68Uv53W0xbYwN82gSFrdzH_wax1gMPhQrF-Mei-W0dhNm9LR-T94MZox4_n-ekdX1crW4Le9_3Nwtru5LyxmFElvRUcWZqKVBi3UrGyVV12PNBdgeOiFqo0xHLeONpY3pqYBB9IMA2Q7Az8jHI3YX_K89xqQf_T5MuVEzxkE1QtI2p74eUzb4GAMOehfc1oRZU9BPrnV2rZ9d6-xaZ9c6u9bZdQZcHgEpmCkmtJvnnhcjPhwRwRqz0wF_u5jM07sA0EorzgX_C07BmlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230874619</pqid></control><display><type>article</type><title>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</title><source>Scientific.net Journals</source><creator>Lopes, João ; Fonseca, Ana Rita ; Viana, Tânia ; Fernandes, Cristiana Henriques ; Morouço, Pedro ; Monteiro de Moura, Carla Sofia ; Biscaia, Sara</creator><creatorcontrib>Lopes, João ; Fonseca, Ana Rita ; Viana, Tânia ; Fernandes, Cristiana Henriques ; Morouço, Pedro ; Monteiro de Moura, Carla Sofia ; Biscaia, Sara</creatorcontrib><description>Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency.
Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783035712438</identifier><identifier>ISBN: 3035712433</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.890.290</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications</publisher><subject>Biocompatibility ; Compression tests ; Construction materials ; Crosslinking ; Free radical polymerization ; FTIR ; Hydrogel ; Hydrogels ; Mechanical properties ; Moisture content ; Organic chemistry ; Photoinitiator ; Photopolymerization ; Polyethylene glycol ; Polymerization ; Regeneration ; Tissue engineering ; Ultraviolet radiation ; Water resistance</subject><ispartof>Applied Mechanics and Materials, 2019-04, Vol.890, p.290-300</ispartof><rights>2019 Lopes et al.</rights><rights>Copyright Trans Tech Publications Ltd. Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</citedby><cites>FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</cites><orcidid>0000-0001-6371-800X ; 0000-0002-5088-8509 ; 0000-0002-2609-6878 ; 0000-0003-2610-1005 ; 0000-0002-5956-9790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4593?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lopes, João</creatorcontrib><creatorcontrib>Fonseca, Ana Rita</creatorcontrib><creatorcontrib>Viana, Tânia</creatorcontrib><creatorcontrib>Fernandes, Cristiana Henriques</creatorcontrib><creatorcontrib>Morouço, Pedro</creatorcontrib><creatorcontrib>Monteiro de Moura, Carla Sofia</creatorcontrib><creatorcontrib>Biscaia, Sara</creatorcontrib><title>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</title><title>Applied Mechanics and Materials</title><description>Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency.
Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.</description><subject>Biocompatibility</subject><subject>Compression tests</subject><subject>Construction materials</subject><subject>Crosslinking</subject><subject>Free radical polymerization</subject><subject>FTIR</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Moisture content</subject><subject>Organic chemistry</subject><subject>Photoinitiator</subject><subject>Photopolymerization</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Regeneration</subject><subject>Tissue engineering</subject><subject>Ultraviolet radiation</subject><subject>Water resistance</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783035712438</isbn><isbn>3035712433</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE1v1DAQhi0oEqX0P0QgITgkHX_EcS6oZdl-SK3gsHfLcSa7rrLxYntZhV-PyyL12tNoNO88r_QQ8olCJYCpi8PhUEXrcEpucLaaMF1cPTxUqoWKtfCKnFIpWdkIxV6T87ZRHHjdUCa4Ovl3g7LlXL4l72J8BJCCCnVK1ouNCcYmDO6PSc5PhR-Kb85bv93lvRux-OnH-fMybeYRJyxuxtn68Uv53W0xbYwN82gSFrdzH_wax1gMPhQrF-Mei-W0dhNm9LR-T94MZox4_n-ekdX1crW4Le9_3Nwtru5LyxmFElvRUcWZqKVBi3UrGyVV12PNBdgeOiFqo0xHLeONpY3pqYBB9IMA2Q7Az8jHI3YX_K89xqQf_T5MuVEzxkE1QtI2p74eUzb4GAMOehfc1oRZU9BPrnV2rZ9d6-xaZ9c6u9bZdQZcHgEpmCkmtJvnnhcjPhwRwRqz0wF_u5jM07sA0EorzgX_C07BmlY</recordid><startdate>20190409</startdate><enddate>20190409</enddate><creator>Lopes, João</creator><creator>Fonseca, Ana Rita</creator><creator>Viana, Tânia</creator><creator>Fernandes, Cristiana Henriques</creator><creator>Morouço, Pedro</creator><creator>Monteiro de Moura, Carla Sofia</creator><creator>Biscaia, Sara</creator><general>Trans Tech Publications</general><general>Trans Tech Publications Ltd</general><scope>RCLKO</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6371-800X</orcidid><orcidid>https://orcid.org/0000-0002-5088-8509</orcidid><orcidid>https://orcid.org/0000-0002-2609-6878</orcidid><orcidid>https://orcid.org/0000-0003-2610-1005</orcidid><orcidid>https://orcid.org/0000-0002-5956-9790</orcidid></search><sort><creationdate>20190409</creationdate><title>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</title><author>Lopes, João ; Fonseca, Ana Rita ; Viana, Tânia ; Fernandes, Cristiana Henriques ; Morouço, Pedro ; Monteiro de Moura, Carla Sofia ; Biscaia, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Compression tests</topic><topic>Construction materials</topic><topic>Crosslinking</topic><topic>Free radical polymerization</topic><topic>FTIR</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Moisture content</topic><topic>Organic chemistry</topic><topic>Photoinitiator</topic><topic>Photopolymerization</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Regeneration</topic><topic>Tissue engineering</topic><topic>Ultraviolet radiation</topic><topic>Water resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, João</creatorcontrib><creatorcontrib>Fonseca, Ana Rita</creatorcontrib><creatorcontrib>Viana, Tânia</creatorcontrib><creatorcontrib>Fernandes, Cristiana Henriques</creatorcontrib><creatorcontrib>Morouço, Pedro</creatorcontrib><creatorcontrib>Monteiro de Moura, Carla Sofia</creatorcontrib><creatorcontrib>Biscaia, Sara</creatorcontrib><collection>RCAAP open access repository</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, João</au><au>Fonseca, Ana Rita</au><au>Viana, Tânia</au><au>Fernandes, Cristiana Henriques</au><au>Morouço, Pedro</au><au>Monteiro de Moura, Carla Sofia</au><au>Biscaia, Sara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2019-04-09</date><risdate>2019</risdate><volume>890</volume><spage>290</spage><epage>300</epage><pages>290-300</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783035712438</isbn><isbn>3035712433</isbn><abstract>Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency.
Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.</abstract><cop>Zurich</cop><pub>Trans Tech Publications</pub><doi>10.4028/www.scientific.net/AMM.890.290</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6371-800X</orcidid><orcidid>https://orcid.org/0000-0002-5088-8509</orcidid><orcidid>https://orcid.org/0000-0002-2609-6878</orcidid><orcidid>https://orcid.org/0000-0003-2610-1005</orcidid><orcidid>https://orcid.org/0000-0002-5956-9790</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2019-04, Vol.890, p.290-300 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_2230874619 |
source | Scientific.net Journals |
subjects | Biocompatibility Compression tests Construction materials Crosslinking Free radical polymerization FTIR Hydrogel Hydrogels Mechanical properties Moisture content Organic chemistry Photoinitiator Photopolymerization Polyethylene glycol Polymerization Regeneration Tissue engineering Ultraviolet radiation Water resistance |
title | Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Biocompatible%20Poly(Ethylene%20Glycol)-Dimethacrylate%20Hydrogels%20for%20Tissue%20Engineering&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Lopes,%20Jo%C3%A3o&rft.date=2019-04-09&rft.volume=890&rft.spage=290&rft.epage=300&rft.pages=290-300&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783035712438&rft.isbn_list=3035712433&rft_id=info:doi/10.4028/www.scientific.net/AMM.890.290&rft_dat=%3Cproquest_cross%3E2230874619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230874619&rft_id=info:pmid/&rfr_iscdi=true |