Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering

Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2019-04, Vol.890, p.290-300
Hauptverfasser: Lopes, João, Fonseca, Ana Rita, Viana, Tânia, Fernandes, Cristiana Henriques, Morouço, Pedro, Monteiro de Moura, Carla Sofia, Biscaia, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue
container_start_page 290
container_title Applied Mechanics and Materials
container_volume 890
creator Lopes, João
Fonseca, Ana Rita
Viana, Tânia
Fernandes, Cristiana Henriques
Morouço, Pedro
Monteiro de Moura, Carla Sofia
Biscaia, Sara
description Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency. Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.
doi_str_mv 10.4028/www.scientific.net/AMM.890.290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230874619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230874619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0oEqX0P0QgITgkHX_EcS6oZdl-SK3gsHfLcSa7rrLxYntZhV-PyyL12tNoNO88r_QQ8olCJYCpi8PhUEXrcEpucLaaMF1cPTxUqoWKtfCKnFIpWdkIxV6T87ZRHHjdUCa4Ovl3g7LlXL4l72J8BJCCCnVK1ouNCcYmDO6PSc5PhR-Kb85bv93lvRux-OnH-fMybeYRJyxuxtn68Uv53W0xbYwN82gSFrdzH_wax1gMPhQrF-Mei-W0dhNm9LR-T94MZox4_n-ekdX1crW4Le9_3Nwtru5LyxmFElvRUcWZqKVBi3UrGyVV12PNBdgeOiFqo0xHLeONpY3pqYBB9IMA2Q7Az8jHI3YX_K89xqQf_T5MuVEzxkE1QtI2p74eUzb4GAMOehfc1oRZU9BPrnV2rZ9d6-xaZ9c6u9bZdQZcHgEpmCkmtJvnnhcjPhwRwRqz0wF_u5jM07sA0EorzgX_C07BmlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230874619</pqid></control><display><type>article</type><title>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</title><source>Scientific.net Journals</source><creator>Lopes, João ; Fonseca, Ana Rita ; Viana, Tânia ; Fernandes, Cristiana Henriques ; Morouço, Pedro ; Monteiro de Moura, Carla Sofia ; Biscaia, Sara</creator><creatorcontrib>Lopes, João ; Fonseca, Ana Rita ; Viana, Tânia ; Fernandes, Cristiana Henriques ; Morouço, Pedro ; Monteiro de Moura, Carla Sofia ; Biscaia, Sara</creatorcontrib><description>Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency. Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783035712438</identifier><identifier>ISBN: 3035712433</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.890.290</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications</publisher><subject>Biocompatibility ; Compression tests ; Construction materials ; Crosslinking ; Free radical polymerization ; FTIR ; Hydrogel ; Hydrogels ; Mechanical properties ; Moisture content ; Organic chemistry ; Photoinitiator ; Photopolymerization ; Polyethylene glycol ; Polymerization ; Regeneration ; Tissue engineering ; Ultraviolet radiation ; Water resistance</subject><ispartof>Applied Mechanics and Materials, 2019-04, Vol.890, p.290-300</ispartof><rights>2019 Lopes et al.</rights><rights>Copyright Trans Tech Publications Ltd. Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</citedby><cites>FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</cites><orcidid>0000-0001-6371-800X ; 0000-0002-5088-8509 ; 0000-0002-2609-6878 ; 0000-0003-2610-1005 ; 0000-0002-5956-9790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4593?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lopes, João</creatorcontrib><creatorcontrib>Fonseca, Ana Rita</creatorcontrib><creatorcontrib>Viana, Tânia</creatorcontrib><creatorcontrib>Fernandes, Cristiana Henriques</creatorcontrib><creatorcontrib>Morouço, Pedro</creatorcontrib><creatorcontrib>Monteiro de Moura, Carla Sofia</creatorcontrib><creatorcontrib>Biscaia, Sara</creatorcontrib><title>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</title><title>Applied Mechanics and Materials</title><description>Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency. Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.</description><subject>Biocompatibility</subject><subject>Compression tests</subject><subject>Construction materials</subject><subject>Crosslinking</subject><subject>Free radical polymerization</subject><subject>FTIR</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>Mechanical properties</subject><subject>Moisture content</subject><subject>Organic chemistry</subject><subject>Photoinitiator</subject><subject>Photopolymerization</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Regeneration</subject><subject>Tissue engineering</subject><subject>Ultraviolet radiation</subject><subject>Water resistance</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783035712438</isbn><isbn>3035712433</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE1v1DAQhi0oEqX0P0QgITgkHX_EcS6oZdl-SK3gsHfLcSa7rrLxYntZhV-PyyL12tNoNO88r_QQ8olCJYCpi8PhUEXrcEpucLaaMF1cPTxUqoWKtfCKnFIpWdkIxV6T87ZRHHjdUCa4Ovl3g7LlXL4l72J8BJCCCnVK1ouNCcYmDO6PSc5PhR-Kb85bv93lvRux-OnH-fMybeYRJyxuxtn68Uv53W0xbYwN82gSFrdzH_wax1gMPhQrF-Mei-W0dhNm9LR-T94MZox4_n-ekdX1crW4Le9_3Nwtru5LyxmFElvRUcWZqKVBi3UrGyVV12PNBdgeOiFqo0xHLeONpY3pqYBB9IMA2Q7Az8jHI3YX_K89xqQf_T5MuVEzxkE1QtI2p74eUzb4GAMOehfc1oRZU9BPrnV2rZ9d6-xaZ9c6u9bZdQZcHgEpmCkmtJvnnhcjPhwRwRqz0wF_u5jM07sA0EorzgX_C07BmlY</recordid><startdate>20190409</startdate><enddate>20190409</enddate><creator>Lopes, João</creator><creator>Fonseca, Ana Rita</creator><creator>Viana, Tânia</creator><creator>Fernandes, Cristiana Henriques</creator><creator>Morouço, Pedro</creator><creator>Monteiro de Moura, Carla Sofia</creator><creator>Biscaia, Sara</creator><general>Trans Tech Publications</general><general>Trans Tech Publications Ltd</general><scope>RCLKO</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6371-800X</orcidid><orcidid>https://orcid.org/0000-0002-5088-8509</orcidid><orcidid>https://orcid.org/0000-0002-2609-6878</orcidid><orcidid>https://orcid.org/0000-0003-2610-1005</orcidid><orcidid>https://orcid.org/0000-0002-5956-9790</orcidid></search><sort><creationdate>20190409</creationdate><title>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</title><author>Lopes, João ; Fonseca, Ana Rita ; Viana, Tânia ; Fernandes, Cristiana Henriques ; Morouço, Pedro ; Monteiro de Moura, Carla Sofia ; Biscaia, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3210-e94b1832456aece5967868bde5340cd0b445a8ab1c237c17ad140f4df4069f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Compression tests</topic><topic>Construction materials</topic><topic>Crosslinking</topic><topic>Free radical polymerization</topic><topic>FTIR</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>Mechanical properties</topic><topic>Moisture content</topic><topic>Organic chemistry</topic><topic>Photoinitiator</topic><topic>Photopolymerization</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Regeneration</topic><topic>Tissue engineering</topic><topic>Ultraviolet radiation</topic><topic>Water resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, João</creatorcontrib><creatorcontrib>Fonseca, Ana Rita</creatorcontrib><creatorcontrib>Viana, Tânia</creatorcontrib><creatorcontrib>Fernandes, Cristiana Henriques</creatorcontrib><creatorcontrib>Morouço, Pedro</creatorcontrib><creatorcontrib>Monteiro de Moura, Carla Sofia</creatorcontrib><creatorcontrib>Biscaia, Sara</creatorcontrib><collection>RCAAP open access repository</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, João</au><au>Fonseca, Ana Rita</au><au>Viana, Tânia</au><au>Fernandes, Cristiana Henriques</au><au>Morouço, Pedro</au><au>Monteiro de Moura, Carla Sofia</au><au>Biscaia, Sara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2019-04-09</date><risdate>2019</risdate><volume>890</volume><spage>290</spage><epage>300</epage><pages>290-300</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783035712438</isbn><isbn>3035712433</isbn><abstract>Acknowledgements: This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) and Centro2020 through the Project references: UID/Multi/04044/2013 and PAMI - ROTEIRO/0328/2013 (Nº022158). It is also funded by the projects insitu.Biomas (POCI-01-0247-FEDER-017771), and NEXT. parts (POCI-01-0247-FEDER-017963) from the Portuguese National Innovation Agency. Tissue Engineering depends on broadly techniques to regenerate tissues and/or organ functions. To do so, tailored polymeric and/or hydrogel scaffolds may be used to ensure the appropriate regeneration. Hydrogels are suitable materials for constructing cell-laden matrices as they can be produced with incorporation of cells and rapidly cross-linked in situ through photopolymerisation reactions. Measurement of the polymerization degree, as well as resistance to compression and water retention are fundamental tests to evaluate the characteristics of hydrogels. In this work, free-radical polymerisation of poly(ethylene glycol)-dimethacrylate (PEGDMA) in UV light was assessed. Several hydrogels with different photoinitiator and water contents were produced to evaluate their influence on hydrogels behaviour. Experiments showed that variations on water and photoinitiator content induce changes in the physical and chemical behaviour of hydrogels. As it was found, water content prevents polymerisation to occur and reduces the mechanical properties of hydrogels weakening them. Furthermore, differences were found in varying water content from 15 to 30%, since this increase turned hydrogels more fragile and increase their stabilization time for water retention.</abstract><cop>Zurich</cop><pub>Trans Tech Publications</pub><doi>10.4028/www.scientific.net/AMM.890.290</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6371-800X</orcidid><orcidid>https://orcid.org/0000-0002-5088-8509</orcidid><orcidid>https://orcid.org/0000-0002-2609-6878</orcidid><orcidid>https://orcid.org/0000-0003-2610-1005</orcidid><orcidid>https://orcid.org/0000-0002-5956-9790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2019-04, Vol.890, p.290-300
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_2230874619
source Scientific.net Journals
subjects Biocompatibility
Compression tests
Construction materials
Crosslinking
Free radical polymerization
FTIR
Hydrogel
Hydrogels
Mechanical properties
Moisture content
Organic chemistry
Photoinitiator
Photopolymerization
Polyethylene glycol
Polymerization
Regeneration
Tissue engineering
Ultraviolet radiation
Water resistance
title Characterization of Biocompatible Poly(Ethylene Glycol)-Dimethacrylate Hydrogels for Tissue Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Biocompatible%20Poly(Ethylene%20Glycol)-Dimethacrylate%20Hydrogels%20for%20Tissue%20Engineering&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Lopes,%20Jo%C3%A3o&rft.date=2019-04-09&rft.volume=890&rft.spage=290&rft.epage=300&rft.pages=290-300&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783035712438&rft.isbn_list=3035712433&rft_id=info:doi/10.4028/www.scientific.net/AMM.890.290&rft_dat=%3Cproquest_cross%3E2230874619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230874619&rft_id=info:pmid/&rfr_iscdi=true