Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation

In this paper, the new idea of application of a curved rotor disk in rotor stator systems is presented and analyzed by using the large eddy simulation technique. The geometry of the examined rotor-stator system consists of a stationary flat disk (stator), a rotating curved disk (rotor) and a station...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion turbulence and combustion, 2019-06, Vol.103 (1), p.111-140
Hauptverfasser: Damavandi, Mohammad Darvish, Nejat, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 1
container_start_page 111
container_title Flow, turbulence and combustion
container_volume 103
creator Damavandi, Mohammad Darvish
Nejat, Amir
description In this paper, the new idea of application of a curved rotor disk in rotor stator systems is presented and analyzed by using the large eddy simulation technique. The geometry of the examined rotor-stator system consists of a stationary flat disk (stator), a rotating curved disk (rotor) and a stationary enclosing cylinder (shroud). A hole in the center of stator allows the flow to enter the cavity, and the clearance between the shroud and rotor enables the flow to exit the cavity. Employing elliptical bumps with different geometrical parameters on the rotor disk (creating a curvature on the rotor), the rotating curved disk is parametrized. Three cavity cases (one with a flat rotor disk, another with the maximum outflow total pressure, and the third with the highest mass flow rate) are selected for LES analysis and more detailed investigation of flow and turbulence structures. The Favre-filtered governing equations for LES analysis of compressible turbulent flows are solved for all three cases. Radial and circumferential flow velocities as well as shear and normal Reynolds stresses in different cavity regions are studied. The flow in a rotor-stator cavity is simultaneously affected by the inlet flow, rotor rotation, and the bump on rotor disk. Creating a bump on rotor disk causes increase of both the radial pressure gradient and the mass flow rate of fluid that enters the rotor-stator cavity.
doi_str_mv 10.1007/s10494-018-0001-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230828214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230828214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-dddf05135c31d24ce106d232334c24266fd0d57dcbfa558a447ee1bc1332fa503</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZL-OsrQqLBSsPYc0ydYt7aYmWaX_3tQVPHmaYXjed-BB6BboPVBaPASgohKEQkkopUCqMzSBrOAEqrI4Tzsvc5JDKS7RVQjbxOQFrSZoMd-5L1y_K690tL4LsdMBuxbXg_-0Br-66DxeRvUzjiHafcCr0PUb3Ci_sXhmzBEvu_2wU7Fz_TW6aNUu2JvfOUWr-eytfibN4umlfmyI5hmPxBjT0gx4pjkYJrQFmhvGGedCM8HyvDXUZIXR61ZlWamEKKyFtQbOWbpQPkV3Y-_Bu4_Bhii3bvB9eikZ47RkJQORKBgp7V0I3rby4Lu98kcJVJ68ydGbTN7kyZusUoaNmZDYfmP9X_P_oW8ddW-q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230828214</pqid></control><display><type>article</type><title>Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Damavandi, Mohammad Darvish ; Nejat, Amir</creator><creatorcontrib>Damavandi, Mohammad Darvish ; Nejat, Amir</creatorcontrib><description>In this paper, the new idea of application of a curved rotor disk in rotor stator systems is presented and analyzed by using the large eddy simulation technique. The geometry of the examined rotor-stator system consists of a stationary flat disk (stator), a rotating curved disk (rotor) and a stationary enclosing cylinder (shroud). A hole in the center of stator allows the flow to enter the cavity, and the clearance between the shroud and rotor enables the flow to exit the cavity. Employing elliptical bumps with different geometrical parameters on the rotor disk (creating a curvature on the rotor), the rotating curved disk is parametrized. Three cavity cases (one with a flat rotor disk, another with the maximum outflow total pressure, and the third with the highest mass flow rate) are selected for LES analysis and more detailed investigation of flow and turbulence structures. The Favre-filtered governing equations for LES analysis of compressible turbulent flows are solved for all three cases. Radial and circumferential flow velocities as well as shear and normal Reynolds stresses in different cavity regions are studied. The flow in a rotor-stator cavity is simultaneously affected by the inlet flow, rotor rotation, and the bump on rotor disk. Creating a bump on rotor disk causes increase of both the radial pressure gradient and the mass flow rate of fluid that enters the rotor-stator cavity.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-018-0001-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Compressibility ; Curvature ; Cylinders ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow characteristics ; Flow control ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Inlet flow ; Large eddy simulation ; Mass flow rate ; Outflow ; Rotating cylinders ; Rotating disks ; Rotation ; Stators ; Turbulence ; Turbulent flow ; Vortices</subject><ispartof>Flow, turbulence and combustion, 2019-06, Vol.103 (1), p.111-140</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-dddf05135c31d24ce106d232334c24266fd0d57dcbfa558a447ee1bc1332fa503</citedby><cites>FETCH-LOGICAL-c353t-dddf05135c31d24ce106d232334c24266fd0d57dcbfa558a447ee1bc1332fa503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-018-0001-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-018-0001-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Damavandi, Mohammad Darvish</creatorcontrib><creatorcontrib>Nejat, Amir</creatorcontrib><title>Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>In this paper, the new idea of application of a curved rotor disk in rotor stator systems is presented and analyzed by using the large eddy simulation technique. The geometry of the examined rotor-stator system consists of a stationary flat disk (stator), a rotating curved disk (rotor) and a stationary enclosing cylinder (shroud). A hole in the center of stator allows the flow to enter the cavity, and the clearance between the shroud and rotor enables the flow to exit the cavity. Employing elliptical bumps with different geometrical parameters on the rotor disk (creating a curvature on the rotor), the rotating curved disk is parametrized. Three cavity cases (one with a flat rotor disk, another with the maximum outflow total pressure, and the third with the highest mass flow rate) are selected for LES analysis and more detailed investigation of flow and turbulence structures. The Favre-filtered governing equations for LES analysis of compressible turbulent flows are solved for all three cases. Radial and circumferential flow velocities as well as shear and normal Reynolds stresses in different cavity regions are studied. The flow in a rotor-stator cavity is simultaneously affected by the inlet flow, rotor rotation, and the bump on rotor disk. Creating a bump on rotor disk causes increase of both the radial pressure gradient and the mass flow rate of fluid that enters the rotor-stator cavity.</description><subject>Automotive Engineering</subject><subject>Compressibility</subject><subject>Curvature</subject><subject>Cylinders</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow characteristics</subject><subject>Flow control</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Inlet flow</subject><subject>Large eddy simulation</subject><subject>Mass flow rate</subject><subject>Outflow</subject><subject>Rotating cylinders</subject><subject>Rotating disks</subject><subject>Rotation</subject><subject>Stators</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vortices</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczSTZL-OsrQqLBSsPYc0ydYt7aYmWaX_3tQVPHmaYXjed-BB6BboPVBaPASgohKEQkkopUCqMzSBrOAEqrI4Tzsvc5JDKS7RVQjbxOQFrSZoMd-5L1y_K690tL4LsdMBuxbXg_-0Br-66DxeRvUzjiHafcCr0PUb3Ci_sXhmzBEvu_2wU7Fz_TW6aNUu2JvfOUWr-eytfibN4umlfmyI5hmPxBjT0gx4pjkYJrQFmhvGGedCM8HyvDXUZIXR61ZlWamEKKyFtQbOWbpQPkV3Y-_Bu4_Bhii3bvB9eikZ47RkJQORKBgp7V0I3rby4Lu98kcJVJ68ydGbTN7kyZusUoaNmZDYfmP9X_P_oW8ddW-q</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Damavandi, Mohammad Darvish</creator><creator>Nejat, Amir</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation</title><author>Damavandi, Mohammad Darvish ; Nejat, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-dddf05135c31d24ce106d232334c24266fd0d57dcbfa558a447ee1bc1332fa503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automotive Engineering</topic><topic>Compressibility</topic><topic>Curvature</topic><topic>Cylinders</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow characteristics</topic><topic>Flow control</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Inlet flow</topic><topic>Large eddy simulation</topic><topic>Mass flow rate</topic><topic>Outflow</topic><topic>Rotating cylinders</topic><topic>Rotating disks</topic><topic>Rotation</topic><topic>Stators</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damavandi, Mohammad Darvish</creatorcontrib><creatorcontrib>Nejat, Amir</creatorcontrib><collection>CrossRef</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damavandi, Mohammad Darvish</au><au>Nejat, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>103</volume><issue>1</issue><spage>111</spage><epage>140</epage><pages>111-140</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>In this paper, the new idea of application of a curved rotor disk in rotor stator systems is presented and analyzed by using the large eddy simulation technique. The geometry of the examined rotor-stator system consists of a stationary flat disk (stator), a rotating curved disk (rotor) and a stationary enclosing cylinder (shroud). A hole in the center of stator allows the flow to enter the cavity, and the clearance between the shroud and rotor enables the flow to exit the cavity. Employing elliptical bumps with different geometrical parameters on the rotor disk (creating a curvature on the rotor), the rotating curved disk is parametrized. Three cavity cases (one with a flat rotor disk, another with the maximum outflow total pressure, and the third with the highest mass flow rate) are selected for LES analysis and more detailed investigation of flow and turbulence structures. The Favre-filtered governing equations for LES analysis of compressible turbulent flows are solved for all three cases. Radial and circumferential flow velocities as well as shear and normal Reynolds stresses in different cavity regions are studied. The flow in a rotor-stator cavity is simultaneously affected by the inlet flow, rotor rotation, and the bump on rotor disk. Creating a bump on rotor disk causes increase of both the radial pressure gradient and the mass flow rate of fluid that enters the rotor-stator cavity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-018-0001-9</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-6184
ispartof Flow, turbulence and combustion, 2019-06, Vol.103 (1), p.111-140
issn 1386-6184
1573-1987
language eng
recordid cdi_proquest_journals_2230828214
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Compressibility
Curvature
Cylinders
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flow characteristics
Flow control
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Inlet flow
Large eddy simulation
Mass flow rate
Outflow
Rotating cylinders
Rotating disks
Rotation
Stators
Turbulence
Turbulent flow
Vortices
title Flow Characteristics of Curved Rotor Stator Systems Using Large Eddy Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Characteristics%20of%20Curved%20Rotor%20Stator%20Systems%20Using%20Large%20Eddy%20Simulation&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Damavandi,%20Mohammad%20Darvish&rft.date=2019-06-01&rft.volume=103&rft.issue=1&rft.spage=111&rft.epage=140&rft.pages=111-140&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-018-0001-9&rft_dat=%3Cproquest_cross%3E2230828214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230828214&rft_id=info:pmid/&rfr_iscdi=true