Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork

A compact and sensitive carbon monoxide (CO) sensor was demonstrated by using quartz enhanced photoacoustic spectroscopy (QEPAS) exploiting a novel 15.2 kHz quartz tuning fork (QTF) with grooved surfaces. The custom QTF was designed to provide a quality factor as high as 15 000 at atmospheric pressu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-05, Vol.91 (9), p.5834-5840
Hauptverfasser: Li, Shangzhi, Dong, Lei, Wu, Hongpeng, Sampaolo, Angelo, Patimisco, Pietro, Spagnolo, Vincenzo, Tittel, Frank K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5840
container_issue 9
container_start_page 5834
container_title Analytical chemistry (Washington)
container_volume 91
creator Li, Shangzhi
Dong, Lei
Wu, Hongpeng
Sampaolo, Angelo
Patimisco, Pietro
Spagnolo, Vincenzo
Tittel, Frank K
description A compact and sensitive carbon monoxide (CO) sensor was demonstrated by using quartz enhanced photoacoustic spectroscopy (QEPAS) exploiting a novel 15.2 kHz quartz tuning fork (QTF) with grooved surfaces. The custom QTF was designed to provide a quality factor as high as 15 000 at atmospheric pressure, which offers a high detection sensitivity. A large QTF prong spacing of 800 μm was selected, allowing one to avoid the use of any spatial filters when employing a quantum cascade laser as the excitation source. Four rectangular grooves were carved on two prong surfaces of the QTF to decrease the electrical resistance and hence enhance the signal amplitude. With water vapor as the catalyst for vibrational energy transfer, the sensor system using the novel surface grooved QTF achieved a CO minimum detection limit of 7 ppb for a 300 ms averaging time, which corresponds to a normalized noise equivalent absorption coefficient of 8.74 × 10–9 cm–1W /√Hz. Continuous measurements covering a seven-day period for atmospheric CO were implemented to verify the reliability and validity of the developed CO sensor system.
doi_str_mv 10.1021/acs.analchem.9b00182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230822659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230822659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-5eaceabebe0a31424d3a1315a12093be222872c68072c20a9f897bd90e8f494c3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOqdvIBLwuvMkabvmUuacwsSJel1O01NX3ZqZtDJ9ejM2vfTm5EC-_z_wMXYmYCBAiks0foANLsyclgNdAIhM7rGeSCREaZbJfdYDABXJIcARO_b-LSACRHrIjhRoHSslemw5WxXRlD5pwR87dO13NG7m2Bgq-WxuW4vGdr6tDb-mlkxb24bbio_QFWG7t41d1yXx8Xq1sHVbN68c-VPnKjTEJ87az9Dz3DWbjxvr3k_YQYULT6e7t89ebsbPo9to-jC5G11NI4yHuo0SCnksqCBAJWIZlwqFEgkKCVoVJKXMhtKkGYQpAXWV6WFRaqCsinVsVJ9dbHtXzn505Nv8zXYuyPK5lAoyKdNEByreUsZZ7x1V-crVS3RfuYB84zgPjvNfx_nOcYid78q7YknlX-hXagBgC2zif4f_7fwBueqLsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230822659</pqid></control><display><type>article</type><title>Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork</title><source>ACS Publications</source><creator>Li, Shangzhi ; Dong, Lei ; Wu, Hongpeng ; Sampaolo, Angelo ; Patimisco, Pietro ; Spagnolo, Vincenzo ; Tittel, Frank K</creator><creatorcontrib>Li, Shangzhi ; Dong, Lei ; Wu, Hongpeng ; Sampaolo, Angelo ; Patimisco, Pietro ; Spagnolo, Vincenzo ; Tittel, Frank K</creatorcontrib><description>A compact and sensitive carbon monoxide (CO) sensor was demonstrated by using quartz enhanced photoacoustic spectroscopy (QEPAS) exploiting a novel 15.2 kHz quartz tuning fork (QTF) with grooved surfaces. The custom QTF was designed to provide a quality factor as high as 15 000 at atmospheric pressure, which offers a high detection sensitivity. A large QTF prong spacing of 800 μm was selected, allowing one to avoid the use of any spatial filters when employing a quantum cascade laser as the excitation source. Four rectangular grooves were carved on two prong surfaces of the QTF to decrease the electrical resistance and hence enhance the signal amplitude. With water vapor as the catalyst for vibrational energy transfer, the sensor system using the novel surface grooved QTF achieved a CO minimum detection limit of 7 ppb for a 300 ms averaging time, which corresponds to a normalized noise equivalent absorption coefficient of 8.74 × 10–9 cm–1W /√Hz. Continuous measurements covering a seven-day period for atmospheric CO were implemented to verify the reliability and validity of the developed CO sensor system.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b00182</identifier><identifier>PMID: 30994331</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorptivity ; Analytical chemistry ; Carbon monoxide ; Chemistry ; Energy transfer ; Grooves ; Q factors ; Quantum cascade lasers ; Quartz ; Sensors ; Spatial filtering ; Spectroscopy ; Tuning ; Water vapor</subject><ispartof>Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5834-5840</ispartof><rights>Copyright American Chemical Society May 7, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-5eaceabebe0a31424d3a1315a12093be222872c68072c20a9f897bd90e8f494c3</citedby><cites>FETCH-LOGICAL-a479t-5eaceabebe0a31424d3a1315a12093be222872c68072c20a9f897bd90e8f494c3</cites><orcidid>0000-0001-7379-3388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b00182$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b00182$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30994331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Shangzhi</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Wu, Hongpeng</creatorcontrib><creatorcontrib>Sampaolo, Angelo</creatorcontrib><creatorcontrib>Patimisco, Pietro</creatorcontrib><creatorcontrib>Spagnolo, Vincenzo</creatorcontrib><creatorcontrib>Tittel, Frank K</creatorcontrib><title>Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A compact and sensitive carbon monoxide (CO) sensor was demonstrated by using quartz enhanced photoacoustic spectroscopy (QEPAS) exploiting a novel 15.2 kHz quartz tuning fork (QTF) with grooved surfaces. The custom QTF was designed to provide a quality factor as high as 15 000 at atmospheric pressure, which offers a high detection sensitivity. A large QTF prong spacing of 800 μm was selected, allowing one to avoid the use of any spatial filters when employing a quantum cascade laser as the excitation source. Four rectangular grooves were carved on two prong surfaces of the QTF to decrease the electrical resistance and hence enhance the signal amplitude. With water vapor as the catalyst for vibrational energy transfer, the sensor system using the novel surface grooved QTF achieved a CO minimum detection limit of 7 ppb for a 300 ms averaging time, which corresponds to a normalized noise equivalent absorption coefficient of 8.74 × 10–9 cm–1W /√Hz. Continuous measurements covering a seven-day period for atmospheric CO were implemented to verify the reliability and validity of the developed CO sensor system.</description><subject>Absorptivity</subject><subject>Analytical chemistry</subject><subject>Carbon monoxide</subject><subject>Chemistry</subject><subject>Energy transfer</subject><subject>Grooves</subject><subject>Q factors</subject><subject>Quantum cascade lasers</subject><subject>Quartz</subject><subject>Sensors</subject><subject>Spatial filtering</subject><subject>Spectroscopy</subject><subject>Tuning</subject><subject>Water vapor</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOqdvIBLwuvMkabvmUuacwsSJel1O01NX3ZqZtDJ9ejM2vfTm5EC-_z_wMXYmYCBAiks0foANLsyclgNdAIhM7rGeSCREaZbJfdYDABXJIcARO_b-LSACRHrIjhRoHSslemw5WxXRlD5pwR87dO13NG7m2Bgq-WxuW4vGdr6tDb-mlkxb24bbio_QFWG7t41d1yXx8Xq1sHVbN68c-VPnKjTEJ87az9Dz3DWbjxvr3k_YQYULT6e7t89ebsbPo9to-jC5G11NI4yHuo0SCnksqCBAJWIZlwqFEgkKCVoVJKXMhtKkGYQpAXWV6WFRaqCsinVsVJ9dbHtXzn505Nv8zXYuyPK5lAoyKdNEByreUsZZ7x1V-crVS3RfuYB84zgPjvNfx_nOcYid78q7YknlX-hXagBgC2zif4f_7fwBueqLsg</recordid><startdate>20190507</startdate><enddate>20190507</enddate><creator>Li, Shangzhi</creator><creator>Dong, Lei</creator><creator>Wu, Hongpeng</creator><creator>Sampaolo, Angelo</creator><creator>Patimisco, Pietro</creator><creator>Spagnolo, Vincenzo</creator><creator>Tittel, Frank K</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7379-3388</orcidid></search><sort><creationdate>20190507</creationdate><title>Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork</title><author>Li, Shangzhi ; Dong, Lei ; Wu, Hongpeng ; Sampaolo, Angelo ; Patimisco, Pietro ; Spagnolo, Vincenzo ; Tittel, Frank K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-5eaceabebe0a31424d3a1315a12093be222872c68072c20a9f897bd90e8f494c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorptivity</topic><topic>Analytical chemistry</topic><topic>Carbon monoxide</topic><topic>Chemistry</topic><topic>Energy transfer</topic><topic>Grooves</topic><topic>Q factors</topic><topic>Quantum cascade lasers</topic><topic>Quartz</topic><topic>Sensors</topic><topic>Spatial filtering</topic><topic>Spectroscopy</topic><topic>Tuning</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shangzhi</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Wu, Hongpeng</creatorcontrib><creatorcontrib>Sampaolo, Angelo</creatorcontrib><creatorcontrib>Patimisco, Pietro</creatorcontrib><creatorcontrib>Spagnolo, Vincenzo</creatorcontrib><creatorcontrib>Tittel, Frank K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shangzhi</au><au>Dong, Lei</au><au>Wu, Hongpeng</au><au>Sampaolo, Angelo</au><au>Patimisco, Pietro</au><au>Spagnolo, Vincenzo</au><au>Tittel, Frank K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-05-07</date><risdate>2019</risdate><volume>91</volume><issue>9</issue><spage>5834</spage><epage>5840</epage><pages>5834-5840</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>A compact and sensitive carbon monoxide (CO) sensor was demonstrated by using quartz enhanced photoacoustic spectroscopy (QEPAS) exploiting a novel 15.2 kHz quartz tuning fork (QTF) with grooved surfaces. The custom QTF was designed to provide a quality factor as high as 15 000 at atmospheric pressure, which offers a high detection sensitivity. A large QTF prong spacing of 800 μm was selected, allowing one to avoid the use of any spatial filters when employing a quantum cascade laser as the excitation source. Four rectangular grooves were carved on two prong surfaces of the QTF to decrease the electrical resistance and hence enhance the signal amplitude. With water vapor as the catalyst for vibrational energy transfer, the sensor system using the novel surface grooved QTF achieved a CO minimum detection limit of 7 ppb for a 300 ms averaging time, which corresponds to a normalized noise equivalent absorption coefficient of 8.74 × 10–9 cm–1W /√Hz. Continuous measurements covering a seven-day period for atmospheric CO were implemented to verify the reliability and validity of the developed CO sensor system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30994331</pmid><doi>10.1021/acs.analchem.9b00182</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7379-3388</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-05, Vol.91 (9), p.5834-5840
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_2230822659
source ACS Publications
subjects Absorptivity
Analytical chemistry
Carbon monoxide
Chemistry
Energy transfer
Grooves
Q factors
Quantum cascade lasers
Quartz
Sensors
Spatial filtering
Spectroscopy
Tuning
Water vapor
title Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ppb-Level%20Quartz-Enhanced%20Photoacoustic%20Detection%20of%20Carbon%20Monoxide%20Exploiting%20a%20Surface%20Grooved%20Tuning%20Fork&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Li,%20Shangzhi&rft.date=2019-05-07&rft.volume=91&rft.issue=9&rft.spage=5834&rft.epage=5840&rft.pages=5834-5840&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b00182&rft_dat=%3Cproquest_cross%3E2230822659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230822659&rft_id=info:pmid/30994331&rfr_iscdi=true