Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District
AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A...
Gespeichert in:
Veröffentlicht in: | Journal of hydrologic engineering 2019-08, Vol.24 (8) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Journal of hydrologic engineering |
container_volume | 24 |
creator | Sikder, Md. Safat Ahmad, Shahryar Hossain, Faisal Gebregiorgis, Abebe S Lee, Hyongki |
description | AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful. |
doi_str_mv | 10.1061/(ASCE)HE.1943-5584.0001807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230630198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230630198</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRSMEEs9_sGADixQ7Dk7cHYSWVELivbYcZwKuil1sB6m_wtfi0vLYsLLv-J4ZeW6SHBI8IJiR0-Pzh2p0Uo8GhOc0PTsr8wHGmJS42Eh2fmqb8Y7LPMWM8-1k1_tp9ORR7CQflfSAHkLfLoboXs51i55cIw2amN60Mmhr0Ng6UNIHbZ7RI6gXo996QBcRbFF8vuulCTpE7zug22jV8y_1h0Sddai2vQ-xKE2Laumc9qiyvQkLNJ5Z20ZhgrMzdKl9cFqF_WSrkzMPB-tzL3kajx6rOr2-uZpU59eppLQIKSjVKNIoXhJQrOE8g7zMMuAUOAHOIOMtA1KynHVQcCwLoB3hLW2KDDcl0L3kaNV37mz8mA9iantn4kiRZRQzigkvo2u4cilnvXfQibnTr9ItBMFimYUQyyxEPRLLvYvl3sU6iwizFSy9gt_23-T_4Ce6TJDX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230630198</pqid></control><display><type>article</type><title>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Sikder, Md. Safat ; Ahmad, Shahryar ; Hossain, Faisal ; Gebregiorgis, Abebe S ; Lee, Hyongki</creator><creatorcontrib>Sikder, Md. Safat ; Ahmad, Shahryar ; Hossain, Faisal ; Gebregiorgis, Abebe S ; Lee, Hyongki</creatorcontrib><description>AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)HE.1943-5584.0001807</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Atmospheric precipitations ; Case Studies ; Case Study ; Civil engineering ; Detection ; Feasibility studies ; Flood control ; Flood forecasting ; Flood mapping ; Floods ; Forecasting ; High resolution ; Hurricanes ; Hydrology ; Lead time ; Precipitation ; Prediction models ; Rain ; Rainfall ; Rainfall forecasting ; Resolution ; Root-mean-square errors ; Storms ; Water levels ; Weather forecasting ; Winter storms</subject><ispartof>Journal of hydrologic engineering, 2019-08, Vol.24 (8)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</citedby><cites>FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</cites><orcidid>0000-0001-6478-7533 ; 0000-0001-6192-3157 ; 0000-0002-1910-1800 ; 0000-0002-9789-3137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0001807$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001807$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Sikder, Md. Safat</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Gebregiorgis, Abebe S</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><title>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</title><title>Journal of hydrologic engineering</title><description>AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful.</description><subject>Atmospheric precipitations</subject><subject>Case Studies</subject><subject>Case Study</subject><subject>Civil engineering</subject><subject>Detection</subject><subject>Feasibility studies</subject><subject>Flood control</subject><subject>Flood forecasting</subject><subject>Flood mapping</subject><subject>Floods</subject><subject>Forecasting</subject><subject>High resolution</subject><subject>Hurricanes</subject><subject>Hydrology</subject><subject>Lead time</subject><subject>Precipitation</subject><subject>Prediction models</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall forecasting</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Storms</subject><subject>Water levels</subject><subject>Weather forecasting</subject><subject>Winter storms</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRSMEEs9_sGADixQ7Dk7cHYSWVELivbYcZwKuil1sB6m_wtfi0vLYsLLv-J4ZeW6SHBI8IJiR0-Pzh2p0Uo8GhOc0PTsr8wHGmJS42Eh2fmqb8Y7LPMWM8-1k1_tp9ORR7CQflfSAHkLfLoboXs51i55cIw2amN60Mmhr0Ng6UNIHbZ7RI6gXo996QBcRbFF8vuulCTpE7zug22jV8y_1h0Sddai2vQ-xKE2Laumc9qiyvQkLNJ5Z20ZhgrMzdKl9cFqF_WSrkzMPB-tzL3kajx6rOr2-uZpU59eppLQIKSjVKNIoXhJQrOE8g7zMMuAUOAHOIOMtA1KynHVQcCwLoB3hLW2KDDcl0L3kaNV37mz8mA9iantn4kiRZRQzigkvo2u4cilnvXfQibnTr9ItBMFimYUQyyxEPRLLvYvl3sU6iwizFSy9gt_23-T_4Ce6TJDX</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Sikder, Md. Safat</creator><creator>Ahmad, Shahryar</creator><creator>Hossain, Faisal</creator><creator>Gebregiorgis, Abebe S</creator><creator>Lee, Hyongki</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-1910-1800</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid></search><sort><creationdate>20190801</creationdate><title>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</title><author>Sikder, Md. Safat ; Ahmad, Shahryar ; Hossain, Faisal ; Gebregiorgis, Abebe S ; Lee, Hyongki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric precipitations</topic><topic>Case Studies</topic><topic>Case Study</topic><topic>Civil engineering</topic><topic>Detection</topic><topic>Feasibility studies</topic><topic>Flood control</topic><topic>Flood forecasting</topic><topic>Flood mapping</topic><topic>Floods</topic><topic>Forecasting</topic><topic>High resolution</topic><topic>Hurricanes</topic><topic>Hydrology</topic><topic>Lead time</topic><topic>Precipitation</topic><topic>Prediction models</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall forecasting</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Storms</topic><topic>Water levels</topic><topic>Weather forecasting</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikder, Md. Safat</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Gebregiorgis, Abebe S</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikder, Md. Safat</au><au>Ahmad, Shahryar</au><au>Hossain, Faisal</au><au>Gebregiorgis, Abebe S</au><au>Lee, Hyongki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>24</volume><issue>8</issue><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HE.1943-5584.0001807</doi><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-1910-1800</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-0699 |
ispartof | Journal of hydrologic engineering, 2019-08, Vol.24 (8) |
issn | 1084-0699 1943-5584 |
language | eng |
recordid | cdi_proquest_journals_2230630198 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Atmospheric precipitations Case Studies Case Study Civil engineering Detection Feasibility studies Flood control Flood forecasting Flood mapping Floods Forecasting High resolution Hurricanes Hydrology Lead time Precipitation Prediction models Rain Rainfall Rainfall forecasting Resolution Root-mean-square errors Storms Water levels Weather forecasting Winter storms |
title | Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Case%20Study:%20Rapid%20Urban%20Inundation%20Forecasting%20Technique%20Based%20on%20Quantitative%20Precipitation%20Forecast%20for%20Houston%20and%20Harris%20County%20Flood%20Control%20District&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Sikder,%20Md.%20Safat&rft.date=2019-08-01&rft.volume=24&rft.issue=8&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)HE.1943-5584.0001807&rft_dat=%3Cproquest_cross%3E2230630198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230630198&rft_id=info:pmid/&rfr_iscdi=true |