Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District

AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrologic engineering 2019-08, Vol.24 (8)
Hauptverfasser: Sikder, Md. Safat, Ahmad, Shahryar, Hossain, Faisal, Gebregiorgis, Abebe S, Lee, Hyongki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of hydrologic engineering
container_volume 24
creator Sikder, Md. Safat
Ahmad, Shahryar
Hossain, Faisal
Gebregiorgis, Abebe S
Lee, Hyongki
description AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful.
doi_str_mv 10.1061/(ASCE)HE.1943-5584.0001807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230630198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230630198</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</originalsourceid><addsrcrecordid>eNp1kctOwzAQRSMEEs9_sGADixQ7Dk7cHYSWVELivbYcZwKuil1sB6m_wtfi0vLYsLLv-J4ZeW6SHBI8IJiR0-Pzh2p0Uo8GhOc0PTsr8wHGmJS42Eh2fmqb8Y7LPMWM8-1k1_tp9ORR7CQflfSAHkLfLoboXs51i55cIw2amN60Mmhr0Ng6UNIHbZ7RI6gXo996QBcRbFF8vuulCTpE7zug22jV8y_1h0Sddai2vQ-xKE2Laumc9qiyvQkLNJ5Z20ZhgrMzdKl9cFqF_WSrkzMPB-tzL3kajx6rOr2-uZpU59eppLQIKSjVKNIoXhJQrOE8g7zMMuAUOAHOIOMtA1KynHVQcCwLoB3hLW2KDDcl0L3kaNV37mz8mA9iantn4kiRZRQzigkvo2u4cilnvXfQibnTr9ItBMFimYUQyyxEPRLLvYvl3sU6iwizFSy9gt_23-T_4Ce6TJDX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230630198</pqid></control><display><type>article</type><title>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Sikder, Md. Safat ; Ahmad, Shahryar ; Hossain, Faisal ; Gebregiorgis, Abebe S ; Lee, Hyongki</creator><creatorcontrib>Sikder, Md. Safat ; Ahmad, Shahryar ; Hossain, Faisal ; Gebregiorgis, Abebe S ; Lee, Hyongki</creatorcontrib><description>AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)HE.1943-5584.0001807</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Atmospheric precipitations ; Case Studies ; Case Study ; Civil engineering ; Detection ; Feasibility studies ; Flood control ; Flood forecasting ; Flood mapping ; Floods ; Forecasting ; High resolution ; Hurricanes ; Hydrology ; Lead time ; Precipitation ; Prediction models ; Rain ; Rainfall ; Rainfall forecasting ; Resolution ; Root-mean-square errors ; Storms ; Water levels ; Weather forecasting ; Winter storms</subject><ispartof>Journal of hydrologic engineering, 2019-08, Vol.24 (8)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</citedby><cites>FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</cites><orcidid>0000-0001-6478-7533 ; 0000-0001-6192-3157 ; 0000-0002-1910-1800 ; 0000-0002-9789-3137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0001807$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001807$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Sikder, Md. Safat</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Gebregiorgis, Abebe S</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><title>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</title><title>Journal of hydrologic engineering</title><description>AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful.</description><subject>Atmospheric precipitations</subject><subject>Case Studies</subject><subject>Case Study</subject><subject>Civil engineering</subject><subject>Detection</subject><subject>Feasibility studies</subject><subject>Flood control</subject><subject>Flood forecasting</subject><subject>Flood mapping</subject><subject>Floods</subject><subject>Forecasting</subject><subject>High resolution</subject><subject>Hurricanes</subject><subject>Hydrology</subject><subject>Lead time</subject><subject>Precipitation</subject><subject>Prediction models</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall forecasting</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Storms</subject><subject>Water levels</subject><subject>Weather forecasting</subject><subject>Winter storms</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRSMEEs9_sGADixQ7Dk7cHYSWVELivbYcZwKuil1sB6m_wtfi0vLYsLLv-J4ZeW6SHBI8IJiR0-Pzh2p0Uo8GhOc0PTsr8wHGmJS42Eh2fmqb8Y7LPMWM8-1k1_tp9ORR7CQflfSAHkLfLoboXs51i55cIw2amN60Mmhr0Ng6UNIHbZ7RI6gXo996QBcRbFF8vuulCTpE7zug22jV8y_1h0Sddai2vQ-xKE2Laumc9qiyvQkLNJ5Z20ZhgrMzdKl9cFqF_WSrkzMPB-tzL3kajx6rOr2-uZpU59eppLQIKSjVKNIoXhJQrOE8g7zMMuAUOAHOIOMtA1KynHVQcCwLoB3hLW2KDDcl0L3kaNV37mz8mA9iantn4kiRZRQzigkvo2u4cilnvXfQibnTr9ItBMFimYUQyyxEPRLLvYvl3sU6iwizFSy9gt_23-T_4Ce6TJDX</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Sikder, Md. Safat</creator><creator>Ahmad, Shahryar</creator><creator>Hossain, Faisal</creator><creator>Gebregiorgis, Abebe S</creator><creator>Lee, Hyongki</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-1910-1800</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid></search><sort><creationdate>20190801</creationdate><title>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</title><author>Sikder, Md. Safat ; Ahmad, Shahryar ; Hossain, Faisal ; Gebregiorgis, Abebe S ; Lee, Hyongki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-eccbc1bc981ec6b992e4822e93e91e96e29d6e18646fe790a7e3f19d3b720b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric precipitations</topic><topic>Case Studies</topic><topic>Case Study</topic><topic>Civil engineering</topic><topic>Detection</topic><topic>Feasibility studies</topic><topic>Flood control</topic><topic>Flood forecasting</topic><topic>Flood mapping</topic><topic>Floods</topic><topic>Forecasting</topic><topic>High resolution</topic><topic>Hurricanes</topic><topic>Hydrology</topic><topic>Lead time</topic><topic>Precipitation</topic><topic>Prediction models</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall forecasting</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Storms</topic><topic>Water levels</topic><topic>Weather forecasting</topic><topic>Winter storms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikder, Md. Safat</creatorcontrib><creatorcontrib>Ahmad, Shahryar</creatorcontrib><creatorcontrib>Hossain, Faisal</creatorcontrib><creatorcontrib>Gebregiorgis, Abebe S</creatorcontrib><creatorcontrib>Lee, Hyongki</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikder, Md. Safat</au><au>Ahmad, Shahryar</au><au>Hossain, Faisal</au><au>Gebregiorgis, Abebe S</au><au>Lee, Hyongki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>24</volume><issue>8</issue><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>AbstractThis study explored the operational feasibility of an empirical approach to flood inundation forecasting using quantitative precipitation forecasting (QPF) from high-resolution numerical weather prediction models for the city of Houston and the Harris County Flood Control District (HCFCD). A proposed rapid-refresh technique for generating forecasted flood inundation maps was tested, wherein the processing time was limited by the time required for generating high-resolution QPF. Using the dense gauge network operated by the HCFCD, hurricane type storms were found to be generally more challenging for quantitative precipitation forecasting than the less intense and more frequent winter storm events. The investigation also indicated that forecasting inundation is possible based on rainfall forecasts using predeveloped rating curves between the observed rainfall and the expected increase in water level. The median of the relative root mean square error (RMSE) in percentage and the correlation of the forecasted water level at gauge locations are consistently below 10% and higher than 0.7, respectively, for up to a four-day lead time. In terms of spatial detection of flooded (non-flooded) areas, this technique yielded qualitative consistency during peak inundation episodes when the QPF was skillful.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HE.1943-5584.0001807</doi><orcidid>https://orcid.org/0000-0001-6478-7533</orcidid><orcidid>https://orcid.org/0000-0001-6192-3157</orcidid><orcidid>https://orcid.org/0000-0002-1910-1800</orcidid><orcidid>https://orcid.org/0000-0002-9789-3137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1084-0699
ispartof Journal of hydrologic engineering, 2019-08, Vol.24 (8)
issn 1084-0699
1943-5584
language eng
recordid cdi_proquest_journals_2230630198
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Atmospheric precipitations
Case Studies
Case Study
Civil engineering
Detection
Feasibility studies
Flood control
Flood forecasting
Flood mapping
Floods
Forecasting
High resolution
Hurricanes
Hydrology
Lead time
Precipitation
Prediction models
Rain
Rainfall
Rainfall forecasting
Resolution
Root-mean-square errors
Storms
Water levels
Weather forecasting
Winter storms
title Case Study: Rapid Urban Inundation Forecasting Technique Based on Quantitative Precipitation Forecast for Houston and Harris County Flood Control District
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Case%20Study:%20Rapid%20Urban%20Inundation%20Forecasting%20Technique%20Based%20on%20Quantitative%20Precipitation%20Forecast%20for%20Houston%20and%20Harris%20County%20Flood%20Control%20District&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Sikder,%20Md.%20Safat&rft.date=2019-08-01&rft.volume=24&rft.issue=8&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)HE.1943-5584.0001807&rft_dat=%3Cproquest_cross%3E2230630198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230630198&rft_id=info:pmid/&rfr_iscdi=true