Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning
Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with...
Gespeichert in:
Veröffentlicht in: | Denki kagaku oyobi kōgyō butsuri kagaku 2019/05/05, Vol.87(3), pp.148-155 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 3 |
container_start_page | 148 |
container_title | Denki kagaku oyobi kōgyō butsuri kagaku |
container_volume | 87 |
creator | OKITA, Naohisa IWAMA, Etsuro TATSUMI, Satoyuki VÕ, Trang Nguyên Hồng NAOI, Wako REID, McMahon Thomas Homer NAOI, Katsuhiko |
description | Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling. |
doi_str_mv | 10.5796/electrochemistry.18-00095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230629537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230629537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</originalsourceid><addsrcrecordid>eNplkM1OGzEURq2qSI3SvMOgbspiEv_OjJcoIgUpNFkAG4Qsj2MHR2ZMbU9RXoGnrodQhGBzbemec-37AXCM4JTVvJppp1UKXt3rBxtT2E9RU0IIOfsCRhg1VYkpQ1_BCBFKS8Io_gYmMe4ygiCvOOYj8LwO3vluqzfFfK-cLpbW6ML4kC_0yrIVwrPZ7dKSG_xzvaInZHbZu2SfpHODIkPru-K37HzqWx3vikXvXDHXQ_Gdsds-yGQz8tfK4uzdd5V0xTpo5buNHQDbbb-DIyNd1JPXcwyuF2dX8_Nyufp1MT9dloo2NJVGYcYVY9LktTQ0FFfMEFabqm2wbmpmOJGyNqrNXcQbTluq6najDMIS1oaMwY_D3Mfg__Q6JrHzfejykwJjAivMGakzxQ-UCj7GoI14DPZBhr1AUAzpi4_pC9SIl_Szuzq4u5jkVr-ZMiSbM_5sNrUgQ_k_4Y1U9zII3ZF_ySKb5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230629537</pqid></control><display><type>article</type><title>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>OKITA, Naohisa ; IWAMA, Etsuro ; TATSUMI, Satoyuki ; VÕ, Trang Nguyên Hồng ; NAOI, Wako ; REID, McMahon Thomas Homer ; NAOI, Katsuhiko</creator><creatorcontrib>OKITA, Naohisa ; IWAMA, Etsuro ; TATSUMI, Satoyuki ; VÕ, Trang Nguyên Hồng ; NAOI, Wako ; REID, McMahon Thomas Homer ; NAOI, Katsuhiko</creatorcontrib><description>Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.18-00095</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Crystals ; Cycles ; Electrochemical Preconditioning ; Electrochemistry ; Electrodes ; Lithium Titanate//Lithium Vanadium Phosphate Full Cells ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Preconditioning ; State of charge ; State of Charge Shifts ; Vanadium ; Vanadium Deposition</subject><ispartof>Electrochemistry, 2019/05/05, Vol.87(3), pp.148-155</ispartof><rights>2019 The Electrochemical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</citedby><cites>FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>OKITA, Naohisa</creatorcontrib><creatorcontrib>IWAMA, Etsuro</creatorcontrib><creatorcontrib>TATSUMI, Satoyuki</creatorcontrib><creatorcontrib>VÕ, Trang Nguyên Hồng</creatorcontrib><creatorcontrib>NAOI, Wako</creatorcontrib><creatorcontrib>REID, McMahon Thomas Homer</creatorcontrib><creatorcontrib>NAOI, Katsuhiko</creatorcontrib><title>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling.</description><subject>Crystals</subject><subject>Cycles</subject><subject>Electrochemical Preconditioning</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Lithium Titanate//Lithium Vanadium Phosphate Full Cells</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Preconditioning</subject><subject>State of charge</subject><subject>State of Charge Shifts</subject><subject>Vanadium</subject><subject>Vanadium Deposition</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNplkM1OGzEURq2qSI3SvMOgbspiEv_OjJcoIgUpNFkAG4Qsj2MHR2ZMbU9RXoGnrodQhGBzbemec-37AXCM4JTVvJppp1UKXt3rBxtT2E9RU0IIOfsCRhg1VYkpQ1_BCBFKS8Io_gYmMe4ygiCvOOYj8LwO3vluqzfFfK-cLpbW6ML4kC_0yrIVwrPZ7dKSG_xzvaInZHbZu2SfpHODIkPru-K37HzqWx3vikXvXDHXQ_Gdsds-yGQz8tfK4uzdd5V0xTpo5buNHQDbbb-DIyNd1JPXcwyuF2dX8_Nyufp1MT9dloo2NJVGYcYVY9LktTQ0FFfMEFabqm2wbmpmOJGyNqrNXcQbTluq6najDMIS1oaMwY_D3Mfg__Q6JrHzfejykwJjAivMGakzxQ-UCj7GoI14DPZBhr1AUAzpi4_pC9SIl_Szuzq4u5jkVr-ZMiSbM_5sNrUgQ_k_4Y1U9zII3ZF_ySKb5Q</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>OKITA, Naohisa</creator><creator>IWAMA, Etsuro</creator><creator>TATSUMI, Satoyuki</creator><creator>VÕ, Trang Nguyên Hồng</creator><creator>NAOI, Wako</creator><creator>REID, McMahon Thomas Homer</creator><creator>NAOI, Katsuhiko</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190505</creationdate><title>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</title><author>OKITA, Naohisa ; IWAMA, Etsuro ; TATSUMI, Satoyuki ; VÕ, Trang Nguyên Hồng ; NAOI, Wako ; REID, McMahon Thomas Homer ; NAOI, Katsuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystals</topic><topic>Cycles</topic><topic>Electrochemical Preconditioning</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Lithium Titanate//Lithium Vanadium Phosphate Full Cells</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Preconditioning</topic><topic>State of charge</topic><topic>State of Charge Shifts</topic><topic>Vanadium</topic><topic>Vanadium Deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OKITA, Naohisa</creatorcontrib><creatorcontrib>IWAMA, Etsuro</creatorcontrib><creatorcontrib>TATSUMI, Satoyuki</creatorcontrib><creatorcontrib>VÕ, Trang Nguyên Hồng</creatorcontrib><creatorcontrib>NAOI, Wako</creatorcontrib><creatorcontrib>REID, McMahon Thomas Homer</creatorcontrib><creatorcontrib>NAOI, Katsuhiko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OKITA, Naohisa</au><au>IWAMA, Etsuro</au><au>TATSUMI, Satoyuki</au><au>VÕ, Trang Nguyên Hồng</au><au>NAOI, Wako</au><au>REID, McMahon Thomas Homer</au><au>NAOI, Katsuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2019-05-05</date><risdate>2019</risdate><volume>87</volume><issue>3</issue><spage>148</spage><epage>155</epage><pages>148-155</pages><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.18-00095</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1344-3542 |
ispartof | Electrochemistry, 2019/05/05, Vol.87(3), pp.148-155 |
issn | 1344-3542 2186-2451 |
language | eng |
recordid | cdi_proquest_journals_2230629537 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Crystals Cycles Electrochemical Preconditioning Electrochemistry Electrodes Lithium Titanate//Lithium Vanadium Phosphate Full Cells Multi wall carbon nanotubes Nanotechnology Nanotubes Preconditioning State of charge State of Charge Shifts Vanadium Vanadium Deposition |
title | Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prolonged%20Cycle%20Life%20for%20Li4Ti5O12//%5BLi3V2(PO4)3/Multiwalled%20Carbon%20Nanotubes%5D%20Full%20Cell%20Configuration%20via%20Electrochemical%20Preconditioning&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=OKITA,%20Naohisa&rft.date=2019-05-05&rft.volume=87&rft.issue=3&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.18-00095&rft_dat=%3Cproquest_cross%3E2230629537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230629537&rft_id=info:pmid/&rfr_iscdi=true |