Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning

Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2019/05/05, Vol.87(3), pp.148-155
Hauptverfasser: OKITA, Naohisa, IWAMA, Etsuro, TATSUMI, Satoyuki, VÕ, Trang Nguyên Hồng, NAOI, Wako, REID, McMahon Thomas Homer, NAOI, Katsuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 3
container_start_page 148
container_title Denki kagaku oyobi kōgyō butsuri kagaku
container_volume 87
creator OKITA, Naohisa
IWAMA, Etsuro
TATSUMI, Satoyuki
VÕ, Trang Nguyên Hồng
NAOI, Wako
REID, McMahon Thomas Homer
NAOI, Katsuhiko
description Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling.
doi_str_mv 10.5796/electrochemistry.18-00095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230629537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230629537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</originalsourceid><addsrcrecordid>eNplkM1OGzEURq2qSI3SvMOgbspiEv_OjJcoIgUpNFkAG4Qsj2MHR2ZMbU9RXoGnrodQhGBzbemec-37AXCM4JTVvJppp1UKXt3rBxtT2E9RU0IIOfsCRhg1VYkpQ1_BCBFKS8Io_gYmMe4ygiCvOOYj8LwO3vluqzfFfK-cLpbW6ML4kC_0yrIVwrPZ7dKSG_xzvaInZHbZu2SfpHODIkPru-K37HzqWx3vikXvXDHXQ_Gdsds-yGQz8tfK4uzdd5V0xTpo5buNHQDbbb-DIyNd1JPXcwyuF2dX8_Nyufp1MT9dloo2NJVGYcYVY9LktTQ0FFfMEFabqm2wbmpmOJGyNqrNXcQbTluq6najDMIS1oaMwY_D3Mfg__Q6JrHzfejykwJjAivMGakzxQ-UCj7GoI14DPZBhr1AUAzpi4_pC9SIl_Szuzq4u5jkVr-ZMiSbM_5sNrUgQ_k_4Y1U9zII3ZF_ySKb5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230629537</pqid></control><display><type>article</type><title>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>OKITA, Naohisa ; IWAMA, Etsuro ; TATSUMI, Satoyuki ; VÕ, Trang Nguyên Hồng ; NAOI, Wako ; REID, McMahon Thomas Homer ; NAOI, Katsuhiko</creator><creatorcontrib>OKITA, Naohisa ; IWAMA, Etsuro ; TATSUMI, Satoyuki ; VÕ, Trang Nguyên Hồng ; NAOI, Wako ; REID, McMahon Thomas Homer ; NAOI, Katsuhiko</creatorcontrib><description>Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling.</description><identifier>ISSN: 1344-3542</identifier><identifier>EISSN: 2186-2451</identifier><identifier>DOI: 10.5796/electrochemistry.18-00095</identifier><language>eng</language><publisher>Tokyo: The Electrochemical Society of Japan</publisher><subject>Crystals ; Cycles ; Electrochemical Preconditioning ; Electrochemistry ; Electrodes ; Lithium Titanate//Lithium Vanadium Phosphate Full Cells ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Preconditioning ; State of charge ; State of Charge Shifts ; Vanadium ; Vanadium Deposition</subject><ispartof>Electrochemistry, 2019/05/05, Vol.87(3), pp.148-155</ispartof><rights>2019 The Electrochemical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</citedby><cites>FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>OKITA, Naohisa</creatorcontrib><creatorcontrib>IWAMA, Etsuro</creatorcontrib><creatorcontrib>TATSUMI, Satoyuki</creatorcontrib><creatorcontrib>VÕ, Trang Nguyên Hồng</creatorcontrib><creatorcontrib>NAOI, Wako</creatorcontrib><creatorcontrib>REID, McMahon Thomas Homer</creatorcontrib><creatorcontrib>NAOI, Katsuhiko</creatorcontrib><title>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</title><title>Denki kagaku oyobi kōgyō butsuri kagaku</title><addtitle>Electrochemistry</addtitle><description>Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling.</description><subject>Crystals</subject><subject>Cycles</subject><subject>Electrochemical Preconditioning</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Lithium Titanate//Lithium Vanadium Phosphate Full Cells</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Preconditioning</subject><subject>State of charge</subject><subject>State of Charge Shifts</subject><subject>Vanadium</subject><subject>Vanadium Deposition</subject><issn>1344-3542</issn><issn>2186-2451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNplkM1OGzEURq2qSI3SvMOgbspiEv_OjJcoIgUpNFkAG4Qsj2MHR2ZMbU9RXoGnrodQhGBzbemec-37AXCM4JTVvJppp1UKXt3rBxtT2E9RU0IIOfsCRhg1VYkpQ1_BCBFKS8Io_gYmMe4ygiCvOOYj8LwO3vluqzfFfK-cLpbW6ML4kC_0yrIVwrPZ7dKSG_xzvaInZHbZu2SfpHODIkPru-K37HzqWx3vikXvXDHXQ_Gdsds-yGQz8tfK4uzdd5V0xTpo5buNHQDbbb-DIyNd1JPXcwyuF2dX8_Nyufp1MT9dloo2NJVGYcYVY9LktTQ0FFfMEFabqm2wbmpmOJGyNqrNXcQbTluq6najDMIS1oaMwY_D3Mfg__Q6JrHzfejykwJjAivMGakzxQ-UCj7GoI14DPZBhr1AUAzpi4_pC9SIl_Szuzq4u5jkVr-ZMiSbM_5sNrUgQ_k_4Y1U9zII3ZF_ySKb5Q</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>OKITA, Naohisa</creator><creator>IWAMA, Etsuro</creator><creator>TATSUMI, Satoyuki</creator><creator>VÕ, Trang Nguyên Hồng</creator><creator>NAOI, Wako</creator><creator>REID, McMahon Thomas Homer</creator><creator>NAOI, Katsuhiko</creator><general>The Electrochemical Society of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190505</creationdate><title>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</title><author>OKITA, Naohisa ; IWAMA, Etsuro ; TATSUMI, Satoyuki ; VÕ, Trang Nguyên Hồng ; NAOI, Wako ; REID, McMahon Thomas Homer ; NAOI, Katsuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-fc259c55af134e0f4265f357f6b82e875f93aa7fcb4e019894b4c7bdcf12a07f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystals</topic><topic>Cycles</topic><topic>Electrochemical Preconditioning</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Lithium Titanate//Lithium Vanadium Phosphate Full Cells</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Preconditioning</topic><topic>State of charge</topic><topic>State of Charge Shifts</topic><topic>Vanadium</topic><topic>Vanadium Deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OKITA, Naohisa</creatorcontrib><creatorcontrib>IWAMA, Etsuro</creatorcontrib><creatorcontrib>TATSUMI, Satoyuki</creatorcontrib><creatorcontrib>VÕ, Trang Nguyên Hồng</creatorcontrib><creatorcontrib>NAOI, Wako</creatorcontrib><creatorcontrib>REID, McMahon Thomas Homer</creatorcontrib><creatorcontrib>NAOI, Katsuhiko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OKITA, Naohisa</au><au>IWAMA, Etsuro</au><au>TATSUMI, Satoyuki</au><au>VÕ, Trang Nguyên Hồng</au><au>NAOI, Wako</au><au>REID, McMahon Thomas Homer</au><au>NAOI, Katsuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning</atitle><jtitle>Denki kagaku oyobi kōgyō butsuri kagaku</jtitle><addtitle>Electrochemistry</addtitle><date>2019-05-05</date><risdate>2019</risdate><volume>87</volume><issue>3</issue><spage>148</spage><epage>155</epage><pages>148-155</pages><issn>1344-3542</issn><eissn>2186-2451</eissn><abstract>Full cells consisting of nanocrystalline Li3V2(PO4)3 (LVP) positive and standard commercial Li4Ti5O12 (LTO) negative electrodes demonstrated outstanding cyclability: capacity retention of 77% over 10,000 cycles. We achieved this stable cycle performance by electrochemical preconditioning of LTO with Li prior to full-cell cycling. The strategy of Li preconditioning not only allows adjustment of the state of charge (SOC) between negative and positive electrodes, but also gives rise to the formation of a protective covering layer on the LTO surface. As we show, this covering layer plays an important role in preventing a key performance-limiting phenomenon—namely, the deposition of vanadium eluted from LVP onto LTO, which degrades the coulombic efficiency of Li+ intercalation/deintercalation into LTO crystals—yielding minimal SOC shifts and stable full-cell cycling.</abstract><cop>Tokyo</cop><pub>The Electrochemical Society of Japan</pub><doi>10.5796/electrochemistry.18-00095</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1344-3542
ispartof Electrochemistry, 2019/05/05, Vol.87(3), pp.148-155
issn 1344-3542
2186-2451
language eng
recordid cdi_proquest_journals_2230629537
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Crystals
Cycles
Electrochemical Preconditioning
Electrochemistry
Electrodes
Lithium Titanate//Lithium Vanadium Phosphate Full Cells
Multi wall carbon nanotubes
Nanotechnology
Nanotubes
Preconditioning
State of charge
State of Charge Shifts
Vanadium
Vanadium Deposition
title Prolonged Cycle Life for Li4Ti5O12//[Li3V2(PO4)3/Multiwalled Carbon Nanotubes] Full Cell Configuration via Electrochemical Preconditioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prolonged%20Cycle%20Life%20for%20Li4Ti5O12//%5BLi3V2(PO4)3/Multiwalled%20Carbon%20Nanotubes%5D%20Full%20Cell%20Configuration%20via%20Electrochemical%20Preconditioning&rft.jtitle=Denki%20kagaku%20oyobi%20k%C5%8Dgy%C5%8D%20butsuri%20kagaku&rft.au=OKITA,%20Naohisa&rft.date=2019-05-05&rft.volume=87&rft.issue=3&rft.spage=148&rft.epage=155&rft.pages=148-155&rft.issn=1344-3542&rft.eissn=2186-2451&rft_id=info:doi/10.5796/electrochemistry.18-00095&rft_dat=%3Cproquest_cross%3E2230629537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230629537&rft_id=info:pmid/&rfr_iscdi=true