Magnetocardiography Using a Magnetoresistive Sensor Array

In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Heart Journal 2019/01/31, Vol.60(1), pp.50-54
Hauptverfasser: Shirai, Yasuhiro, Hirao, Kenzo, Shibuya, Tomohiko, Okawa, Shuichi, Hasegawa, Yuki, Adachi, Yoshiaki, Sekihara, Kensuke, Kawabata, Shigenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 50
container_title International Heart Journal
container_volume 60
creator Shirai, Yasuhiro
Hirao, Kenzo
Shibuya, Tomohiko
Okawa, Shuichi
Hasegawa, Yuki
Adachi, Yoshiaki
Sekihara, Kensuke
Kawabata, Shigenori
description In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine.
doi_str_mv 10.1536/ihj.18-002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230599386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230599386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk5v_AFS8E7oPEmaNLlzDL9g4oXuOqTZadeytTPpBvv31q3u5pwD78Nz4CXklsKYCi4fy2U1pioGYGdkSHmiY860Pu9vxqUYkKsQKoCECkgvyYBDIhPK-JDoD1vU2DbO-kXZFN5ulvtoHsq6iGzUZx5DGdpyh9EX1qHx0cR7u78mF7ldBbzp94jMX56_p2_x7PP1fTqZxU4I0caSphIpFy61DnJMEB0FKlMLGVMLUIlWgmGOGeZaOaaYVYmlkAFCmkmFfETuj96Nb362GFpTNVtfdy8NYxyE1lzJjno4Us43IXjMzcaXa-v3hoL5a8l0LRmqTNdSB9_1ym22xsUJ_a-lA56OQBVaW-AJsL4t3QoPLtl5D-PgPEVuab3Bmv8C1Kd5Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230599386</pqid></control><display><type>article</type><title>Magnetocardiography Using a Magnetoresistive Sensor Array</title><source>MEDLINE</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shirai, Yasuhiro ; Hirao, Kenzo ; Shibuya, Tomohiko ; Okawa, Shuichi ; Hasegawa, Yuki ; Adachi, Yoshiaki ; Sekihara, Kensuke ; Kawabata, Shigenori</creator><creatorcontrib>Shirai, Yasuhiro ; Hirao, Kenzo ; Shibuya, Tomohiko ; Okawa, Shuichi ; Hasegawa, Yuki ; Adachi, Yoshiaki ; Sekihara, Kensuke ; Kawabata, Shigenori</creatorcontrib><description>In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine.</description><identifier>ISSN: 1349-2365</identifier><identifier>EISSN: 1349-3299</identifier><identifier>DOI: 10.1536/ihj.18-002</identifier><identifier>PMID: 30464123</identifier><language>eng</language><publisher>Japan: International Heart Journal Association</publisher><subject>EKG ; Heart ; Heart - physiology ; Helium ; Humans ; Japan ; Magnetic fields ; Magnetism ; Magnetocardiograms ; Magnetocardiography - instrumentation ; Sensors ; Signal Processing, Computer-Assisted ; Superconducting quantum interference device</subject><ispartof>International Heart Journal, 2019/01/31, Vol.60(1), pp.50-54</ispartof><rights>2019 by the International Heart Journal Association</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</citedby><cites>FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30464123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirai, Yasuhiro</creatorcontrib><creatorcontrib>Hirao, Kenzo</creatorcontrib><creatorcontrib>Shibuya, Tomohiko</creatorcontrib><creatorcontrib>Okawa, Shuichi</creatorcontrib><creatorcontrib>Hasegawa, Yuki</creatorcontrib><creatorcontrib>Adachi, Yoshiaki</creatorcontrib><creatorcontrib>Sekihara, Kensuke</creatorcontrib><creatorcontrib>Kawabata, Shigenori</creatorcontrib><title>Magnetocardiography Using a Magnetoresistive Sensor Array</title><title>International Heart Journal</title><addtitle>Int. Heart J.</addtitle><description>In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine.</description><subject>EKG</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Helium</subject><subject>Humans</subject><subject>Japan</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetocardiograms</subject><subject>Magnetocardiography - instrumentation</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Superconducting quantum interference device</subject><issn>1349-2365</issn><issn>1349-3299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kF1LwzAUhoMobk5v_AFS8E7oPEmaNLlzDL9g4oXuOqTZadeytTPpBvv31q3u5pwD78Nz4CXklsKYCi4fy2U1pioGYGdkSHmiY860Pu9vxqUYkKsQKoCECkgvyYBDIhPK-JDoD1vU2DbO-kXZFN5ulvtoHsq6iGzUZx5DGdpyh9EX1qHx0cR7u78mF7ldBbzp94jMX56_p2_x7PP1fTqZxU4I0caSphIpFy61DnJMEB0FKlMLGVMLUIlWgmGOGeZaOaaYVYmlkAFCmkmFfETuj96Nb362GFpTNVtfdy8NYxyE1lzJjno4Us43IXjMzcaXa-v3hoL5a8l0LRmqTNdSB9_1ym22xsUJ_a-lA56OQBVaW-AJsL4t3QoPLtl5D-PgPEVuab3Bmv8C1Kd5Bg</recordid><startdate>20190131</startdate><enddate>20190131</enddate><creator>Shirai, Yasuhiro</creator><creator>Hirao, Kenzo</creator><creator>Shibuya, Tomohiko</creator><creator>Okawa, Shuichi</creator><creator>Hasegawa, Yuki</creator><creator>Adachi, Yoshiaki</creator><creator>Sekihara, Kensuke</creator><creator>Kawabata, Shigenori</creator><general>International Heart Journal Association</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope></search><sort><creationdate>20190131</creationdate><title>Magnetocardiography Using a Magnetoresistive Sensor Array</title><author>Shirai, Yasuhiro ; Hirao, Kenzo ; Shibuya, Tomohiko ; Okawa, Shuichi ; Hasegawa, Yuki ; Adachi, Yoshiaki ; Sekihara, Kensuke ; Kawabata, Shigenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>EKG</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Helium</topic><topic>Humans</topic><topic>Japan</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetocardiograms</topic><topic>Magnetocardiography - instrumentation</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Superconducting quantum interference device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirai, Yasuhiro</creatorcontrib><creatorcontrib>Hirao, Kenzo</creatorcontrib><creatorcontrib>Shibuya, Tomohiko</creatorcontrib><creatorcontrib>Okawa, Shuichi</creatorcontrib><creatorcontrib>Hasegawa, Yuki</creatorcontrib><creatorcontrib>Adachi, Yoshiaki</creatorcontrib><creatorcontrib>Sekihara, Kensuke</creatorcontrib><creatorcontrib>Kawabata, Shigenori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>International Heart Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirai, Yasuhiro</au><au>Hirao, Kenzo</au><au>Shibuya, Tomohiko</au><au>Okawa, Shuichi</au><au>Hasegawa, Yuki</au><au>Adachi, Yoshiaki</au><au>Sekihara, Kensuke</au><au>Kawabata, Shigenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetocardiography Using a Magnetoresistive Sensor Array</atitle><jtitle>International Heart Journal</jtitle><addtitle>Int. Heart J.</addtitle><date>2019-01-31</date><risdate>2019</risdate><volume>60</volume><issue>1</issue><spage>50</spage><epage>54</epage><pages>50-54</pages><issn>1349-2365</issn><eissn>1349-3299</eissn><abstract>In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine.</abstract><cop>Japan</cop><pub>International Heart Journal Association</pub><pmid>30464123</pmid><doi>10.1536/ihj.18-002</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1349-2365
ispartof International Heart Journal, 2019/01/31, Vol.60(1), pp.50-54
issn 1349-2365
1349-3299
language eng
recordid cdi_proquest_journals_2230599386
source MEDLINE; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals
subjects EKG
Heart
Heart - physiology
Helium
Humans
Japan
Magnetic fields
Magnetism
Magnetocardiograms
Magnetocardiography - instrumentation
Sensors
Signal Processing, Computer-Assisted
Superconducting quantum interference device
title Magnetocardiography Using a Magnetoresistive Sensor Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetocardiography%20Using%20a%20Magnetoresistive%20Sensor%20Array&rft.jtitle=International%20Heart%20Journal&rft.au=Shirai,%20Yasuhiro&rft.date=2019-01-31&rft.volume=60&rft.issue=1&rft.spage=50&rft.epage=54&rft.pages=50-54&rft.issn=1349-2365&rft.eissn=1349-3299&rft_id=info:doi/10.1536/ihj.18-002&rft_dat=%3Cproquest_cross%3E2230599386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230599386&rft_id=info:pmid/30464123&rfr_iscdi=true