Magnetocardiography Using a Magnetoresistive Sensor Array
In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs a...
Gespeichert in:
Veröffentlicht in: | International Heart Journal 2019/01/31, Vol.60(1), pp.50-54 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | International Heart Journal |
container_volume | 60 |
creator | Shirai, Yasuhiro Hirao, Kenzo Shibuya, Tomohiko Okawa, Shuichi Hasegawa, Yuki Adachi, Yoshiaki Sekihara, Kensuke Kawabata, Shigenori |
description | In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine. |
doi_str_mv | 10.1536/ihj.18-002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230599386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230599386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk5v_AFS8E7oPEmaNLlzDL9g4oXuOqTZadeytTPpBvv31q3u5pwD78Nz4CXklsKYCi4fy2U1pioGYGdkSHmiY860Pu9vxqUYkKsQKoCECkgvyYBDIhPK-JDoD1vU2DbO-kXZFN5ulvtoHsq6iGzUZx5DGdpyh9EX1qHx0cR7u78mF7ldBbzp94jMX56_p2_x7PP1fTqZxU4I0caSphIpFy61DnJMEB0FKlMLGVMLUIlWgmGOGeZaOaaYVYmlkAFCmkmFfETuj96Nb362GFpTNVtfdy8NYxyE1lzJjno4Us43IXjMzcaXa-v3hoL5a8l0LRmqTNdSB9_1ym22xsUJ_a-lA56OQBVaW-AJsL4t3QoPLtl5D-PgPEVuab3Bmv8C1Kd5Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230599386</pqid></control><display><type>article</type><title>Magnetocardiography Using a Magnetoresistive Sensor Array</title><source>MEDLINE</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shirai, Yasuhiro ; Hirao, Kenzo ; Shibuya, Tomohiko ; Okawa, Shuichi ; Hasegawa, Yuki ; Adachi, Yoshiaki ; Sekihara, Kensuke ; Kawabata, Shigenori</creator><creatorcontrib>Shirai, Yasuhiro ; Hirao, Kenzo ; Shibuya, Tomohiko ; Okawa, Shuichi ; Hasegawa, Yuki ; Adachi, Yoshiaki ; Sekihara, Kensuke ; Kawabata, Shigenori</creatorcontrib><description>In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine.</description><identifier>ISSN: 1349-2365</identifier><identifier>EISSN: 1349-3299</identifier><identifier>DOI: 10.1536/ihj.18-002</identifier><identifier>PMID: 30464123</identifier><language>eng</language><publisher>Japan: International Heart Journal Association</publisher><subject>EKG ; Heart ; Heart - physiology ; Helium ; Humans ; Japan ; Magnetic fields ; Magnetism ; Magnetocardiograms ; Magnetocardiography - instrumentation ; Sensors ; Signal Processing, Computer-Assisted ; Superconducting quantum interference device</subject><ispartof>International Heart Journal, 2019/01/31, Vol.60(1), pp.50-54</ispartof><rights>2019 by the International Heart Journal Association</rights><rights>Copyright Japan Science and Technology Agency 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</citedby><cites>FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30464123$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirai, Yasuhiro</creatorcontrib><creatorcontrib>Hirao, Kenzo</creatorcontrib><creatorcontrib>Shibuya, Tomohiko</creatorcontrib><creatorcontrib>Okawa, Shuichi</creatorcontrib><creatorcontrib>Hasegawa, Yuki</creatorcontrib><creatorcontrib>Adachi, Yoshiaki</creatorcontrib><creatorcontrib>Sekihara, Kensuke</creatorcontrib><creatorcontrib>Kawabata, Shigenori</creatorcontrib><title>Magnetocardiography Using a Magnetoresistive Sensor Array</title><title>International Heart Journal</title><addtitle>Int. Heart J.</addtitle><description>In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine.</description><subject>EKG</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Helium</subject><subject>Humans</subject><subject>Japan</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetocardiograms</subject><subject>Magnetocardiography - instrumentation</subject><subject>Sensors</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Superconducting quantum interference device</subject><issn>1349-2365</issn><issn>1349-3299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kF1LwzAUhoMobk5v_AFS8E7oPEmaNLlzDL9g4oXuOqTZadeytTPpBvv31q3u5pwD78Nz4CXklsKYCi4fy2U1pioGYGdkSHmiY860Pu9vxqUYkKsQKoCECkgvyYBDIhPK-JDoD1vU2DbO-kXZFN5ulvtoHsq6iGzUZx5DGdpyh9EX1qHx0cR7u78mF7ldBbzp94jMX56_p2_x7PP1fTqZxU4I0caSphIpFy61DnJMEB0FKlMLGVMLUIlWgmGOGeZaOaaYVYmlkAFCmkmFfETuj96Nb362GFpTNVtfdy8NYxyE1lzJjno4Us43IXjMzcaXa-v3hoL5a8l0LRmqTNdSB9_1ym22xsUJ_a-lA56OQBVaW-AJsL4t3QoPLtl5D-PgPEVuab3Bmv8C1Kd5Bg</recordid><startdate>20190131</startdate><enddate>20190131</enddate><creator>Shirai, Yasuhiro</creator><creator>Hirao, Kenzo</creator><creator>Shibuya, Tomohiko</creator><creator>Okawa, Shuichi</creator><creator>Hasegawa, Yuki</creator><creator>Adachi, Yoshiaki</creator><creator>Sekihara, Kensuke</creator><creator>Kawabata, Shigenori</creator><general>International Heart Journal Association</general><general>Japan Science and Technology Agency</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope></search><sort><creationdate>20190131</creationdate><title>Magnetocardiography Using a Magnetoresistive Sensor Array</title><author>Shirai, Yasuhiro ; Hirao, Kenzo ; Shibuya, Tomohiko ; Okawa, Shuichi ; Hasegawa, Yuki ; Adachi, Yoshiaki ; Sekihara, Kensuke ; Kawabata, Shigenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-6176e135c7ac0fe4eec10167a0b28d0849852efebef98c282a84a10b0e07b68e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>EKG</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Helium</topic><topic>Humans</topic><topic>Japan</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetocardiograms</topic><topic>Magnetocardiography - instrumentation</topic><topic>Sensors</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Superconducting quantum interference device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirai, Yasuhiro</creatorcontrib><creatorcontrib>Hirao, Kenzo</creatorcontrib><creatorcontrib>Shibuya, Tomohiko</creatorcontrib><creatorcontrib>Okawa, Shuichi</creatorcontrib><creatorcontrib>Hasegawa, Yuki</creatorcontrib><creatorcontrib>Adachi, Yoshiaki</creatorcontrib><creatorcontrib>Sekihara, Kensuke</creatorcontrib><creatorcontrib>Kawabata, Shigenori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>International Heart Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirai, Yasuhiro</au><au>Hirao, Kenzo</au><au>Shibuya, Tomohiko</au><au>Okawa, Shuichi</au><au>Hasegawa, Yuki</au><au>Adachi, Yoshiaki</au><au>Sekihara, Kensuke</au><au>Kawabata, Shigenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetocardiography Using a Magnetoresistive Sensor Array</atitle><jtitle>International Heart Journal</jtitle><addtitle>Int. Heart J.</addtitle><date>2019-01-31</date><risdate>2019</risdate><volume>60</volume><issue>1</issue><spage>50</spage><epage>54</epage><pages>50-54</pages><issn>1349-2365</issn><eissn>1349-3299</eissn><abstract>In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs. This study was aimed to evaluate feasibility of the MR sensor array for acquiring MCGs.We used an MR sensor array, which was developed for measuring magnetic fields in the picotesla range, with a reduced noise level (TDK Corporation, Tokyo, Japan). A 30-channel MR sensor array was placed in a magnetically shielded room, and the cardiac magnetic field over the anterior chest walls of five healthy subjects was recorded.For all five subjects, MCGs were successfully recorded using the MR sensor array. The cardiac magnetic field corresponding to P, QRS, and T waves on an electrocardiogram (ECG) was detectable by signals averaging 272 ± 27.5 beats.An MR sensor array can be used to measure cardiac magnetic fields. Our results will contribute to the development of low-cost devices for recording MCGs, which will help develop non-invasive diagnostics in cardiovascular medicine.</abstract><cop>Japan</cop><pub>International Heart Journal Association</pub><pmid>30464123</pmid><doi>10.1536/ihj.18-002</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1349-2365 |
ispartof | International Heart Journal, 2019/01/31, Vol.60(1), pp.50-54 |
issn | 1349-2365 1349-3299 |
language | eng |
recordid | cdi_proquest_journals_2230599386 |
source | MEDLINE; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals |
subjects | EKG Heart Heart - physiology Helium Humans Japan Magnetic fields Magnetism Magnetocardiograms Magnetocardiography - instrumentation Sensors Signal Processing, Computer-Assisted Superconducting quantum interference device |
title | Magnetocardiography Using a Magnetoresistive Sensor Array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetocardiography%20Using%20a%20Magnetoresistive%20Sensor%20Array&rft.jtitle=International%20Heart%20Journal&rft.au=Shirai,%20Yasuhiro&rft.date=2019-01-31&rft.volume=60&rft.issue=1&rft.spage=50&rft.epage=54&rft.pages=50-54&rft.issn=1349-2365&rft.eissn=1349-3299&rft_id=info:doi/10.1536/ihj.18-002&rft_dat=%3Cproquest_cross%3E2230599386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230599386&rft_id=info:pmid/30464123&rfr_iscdi=true |